دانلود مقاله الکتریسیته

Word 125 KB 10071 25
مشخص نشده مشخص نشده فیزیک - نجوم
قیمت قدیم:۱۶,۰۰۰ تومان
قیمت: ۱۲,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • الکتریسیته الکتریسیته، برگرفته شده از کلمه یونانی: ήλεκτρον ، اثری است که به دلیل موجودیت بار الکتریکی پدید می‌آید و همراه با مغناطیس یکی از نیروهای پایه در فیزیک به نام الکترومغناطیس را تشکیل می‌دهد.

    مفاهیم اصلی پتانسیل الکتریکی جریان الکتریکی میدان الکتریکی انرژی الکتریکی بار الکتریکی مدار الکتریکی ‌ترانسفورماتور تاریخچه تاریخ الکتریسیته به ایران و بین‌النهرین باستان در دوره اشکانیان برمی‌گردد و اولین باطری اختراع شده را به اشکانیان نسبت می‌دهند که به خاطر محل یافتش به باطری بغدادی شهرت گرفته است.[1] الکتریسیته امروزی، توانایی‌های خودش را بیشتر مدیون زحمات فیزیکدانانی همچون، الساندر ولت، آندره آمپر، نیکلا تسلا، جرج سیمون اهم، مایکل فارادی و توماس ادیسون (به عنوان مخترع) است خواص خطوط میدان الکتریکی خواص عمده خطوط میدان الکتریکی در مسائل الکترواستاتیک: به خاطر اینک میدان الکتریکی در هر نقطه از فضا وجود دارد، در هر نقطه از فضا همواره می توان یک خط میدان کشید.

    برای توزیع بار های اکتریکی معلوم ، در هر نقطه میدان الکتریکی دارای بزرگی و راستای کاملا مشخصی است.

    به این معنا که در هر نقطه خط نیروی الکتریکی را فقط می توان در یک راستای معین یعنی بصورت تک خط کشید.

    به بیان دیگر خط های نیرو همدیگر را قطع نمی کنند.

    خط های نیرو ممکن است تنها در بار نقطه ای یکدیگر را قطع کنند.

    خط های نیرو از بار مثبت (نقطه شروع خط های میدان) خارج و به بار منفی (انتهای خطوط نیرو) نزدیک می شوند.

    خط های میدان الکتریکی در هیچ نقطه ای به جز بار الکتریکی پایان نمی پذیرند (ختم خطوط میدان بر سطوح هادی ها به این دلیل است که بارها در سطوح هادی ها توزیع یافته اند).

    آنها از بار مثبت به سوی بار منفی اند و می توانند از میان نارسانا ها عبور کنند.

    چون در داخل رساناها میدان الکتریکی وجود ندارد (صفر است)، بارهای آنها در حالت تعادل به سر می برند.

    در داخل رساناها خط میدان الکتریکی وجود ندارد.

    به عبارتی خط های میدان الکتریکی از داخل رسانا ها عبور نمی کنند.

    و این خطوط از سطح رسانا ها شروع و به سطحشان ختم می شوند.

    چون بارهای الکتریکی نقطه شروع و پایان خطوط میدان الکتریکی هستند، بارهای مثبت روی سطوحی واقع اند که خط میدان شروع می شود.

    در حالیکه بار های منفی روی سطوحی قراردارند، که خط میدان پایان می پذیرند.

    خطوط میدان الکتریکی بر سطح رسانا عمودند: بدیهی است خطوط میدان الکتریکی راستای نیرو های وارد بر بار را نشان می دهند.

    اگر این خطوط با سطح رسانا زاویه ای داشته باشند نیرو مؤلفه ای روی سطح خواهد داشت.

    در این صورت بارها با این مولفه روی سطح جابه جا خواهند شد.

    از این رو ترازمندی بارهای الکتریکی فقط هنگامی ممکن است.

    که خطوط میدان در امتداد عمود بر سطح رسانا ی مورد نظر باشند.

    پتانسیل الکتریکی در رساناها: چون داخل هر رسانا میدان الکتریکی صفر است، به عبارتی خطوط میدانی وجود ندارد.

    بنابر این بین هر دو نقطه از رسانا اختلاف پتاسیل الکتریکی صفر است.

    بر طبق رابطه زیر: E=U/d بنابراین U=Ed که در آن E میدان الکتریکی ، d فاصله نقطه میدان از مبدا و U اختلاف پتاسیل الکتریکی می باشد.

    این گفته در تمام نقاط روی رسانا نیز صدق می کند.

    در نتیجه سطح رسانا سطح هم پتاسیل است.

    سطوح تک تک رساناها، سطوح هم پتاسیل است اما احتمال دارد بین دو سطح رسانای مستقل از هم اختلاف پتاسیل وجود داشته باشد.

    شار الکتریکی تعداد خطوط میدان الکتریکی که از سطح عمود بر مسیر خطوط عبور می‌‌کنند، را شار الکتریکی می‌گویند.

    شار یکی از خواص تمام میدانهای برداری است که آن را برای میدان الکتریکی به صورت تعریف می‌کنند.

    مقدمه فرض کنید یک حلقه سیم چهار گوش را در جهت جریان آب طوری قرار داده‌ایم که صفحه حلقه بر راستای جریان آب عمود است.

    اگر مساحت حلقه را A و سرعت جریان آب را با v نشان دهیم، در این صورت آهنگ شارش آب از درون حلقه را که با Ф نشان می‌‌دهند، به صورت Ф=Av تعریف می‌‌شود.

    Ф را شار می‌‌گویند.

    اگر حلقه بر راستای جریان آب عمود نبوده، بلکه با بردار سرعت جریان آب زاویه θ بسازد، در این صورت شار به صورت Ф=BAcosθ در می‌‌آید.

    عین همین قضیه در مورد میدان الکتریکی نیز برقرار است.

    از الکترواستاتیک می‌‌دانیم که میدان الکتریکی حاصل از یک توزیع بار بوسیله خطوطی که به عنوان خطوط نیرو معروف هستند، نشان داده می‌‌شود.

    بنابراین در هر ناحیه اگر یک سطح بسته فرضی در نظر بگیریم، این سطح بوسیله یک بردار عمود بر آن مشخص می‌‌گردد.

    این بردار را بردار نرمال می‌‌گویند.

    بنابراین اگر خطوط نیرو با بردار نرمال زاویه θ بسازند و مساحت سطح برابر A باشد، در این صورت کافی است میدان حاصل از تعداد خطوط نیرو موجود در داخل سطح را در مساحت سطح ضرب کنیم.

    این کار را با استفاده از انتگرال انجام می‌‌دهند، یعنی سطح را به المانهای کوچک سطح dA تقسیم می‌‌کنند.

    المانها چون به اندازه دلخواه کوچک انتخاب می‌‌شوند، بنابراین می‌‌توان میدان الکتریکی را در داخل المان سطح dA ثابت فرض کرد.

    بنابراین اگر هر المان را در E موجود در داخل آن ضرب کرده و سهم مربوط به تمام المانها را جمع کنیم، شار الکتریکی حاصل می‌‌شود و این همان تعریف انتگرال است، یعنی به زبان ریاضی می‌‌توان گفت: مثال فرض کنید در یک میدان الکتریکی یکنواخت E ، یک استوانه طوری قرار داده شده است که محور استوانه با میدان موازی است.

    سطح استوانه را می‌‌توان به سه سطح مجزا تقسیم نموده و شار مربوط به هر کدام را مجزا حساب نموده و نتیجه را با هم جمع کرد.

    در طرفین استوانه ، در یک طرف جهت میدان و جهت بردار عمود بر سطح در یک راستا و هم جهت هستند، بنابراین اگر مساحت آن را با A نشان دهیم، چون میدان الکتریکی یکنواخت است، لذا سهم شار مربوط به این سطح برابر EA خواهد بود.

    اما در قاعده دیگر استوانه ، جهت میدان و جهت بردار عمود بر سطح با هم زاویه 180 درجه می‌‌سازند.

    لذا اگر مساحت آن A باشد، شار آن برابر EA- خواهد بود و بالاخره در مورد سطح جانبی استوانه بردار عمود بر سطح و میدان الکتریکی بر هم عمودند، لذا سهم شار مربوط به سطح جانبی صفر خواهد شد.

    به این ترتیب شار الکتریکی کل که از سطح استوانه می‌‌گذرد، صفر خواهد بود.

    این مساله تعجب آور نیست، چون خطوط نیرو از یک طرف وارد و از طرف دیگر خارج می‌‌شوند و اصلا از سطح جانبی شاری عبور نمی‌‌کند.

    فرض کنید در یک میدان الکتریکی یکنواخت E ، یک استوانه طوری قرار داده شده است که محور استوانه با میدان موازی است.

    شار الکتریکی و قانون گاوس در الکتریسیته با فهمیدن مفهوم شار الکتریکی می‌‌توان قانون گاوس را به زبان شار الکتریکی بیان نمود.

    به بیان دیگر ، اگر سطح گاوسی بیانگر سطحی باشد که شار الکتریکی در داخل آن مورد نظر باشد، قانون گاوس را می‌‌توان این گونه بیان نمود که شار الکتریکیی که از داخل یک سطح بسته مفروض عبور می‌‌کند، برابر q/ε_0 است.

    ε_0 گذردهی الکتریکی خلا می‌‌باشد.

    یکای شار الکتریکی از آنجا که شار الکتریکی را به صورت حاصلضرب مساحت سطح در میدان الکتریکی جاری شده از داخل آن تعریف کردیم، لذا چون یکای میدان الکتریکی را نیوتن بر کولن در نظر می‌‌گیریم، بنابراین یکای شار الکتریکی نیز برابر نیوتن در متر مربع بر کولن خواهد بود که به اختصار به صورت نشان داده می‌‌شود.

    آهنربای الکتریکی دید کلی آهنربای دائمی با کیفیت بالا کاربردهای بسیار زیاد و مهمی در علم و انقلاب تکنولوژیک ، مثلا در اسبابهای اندازه گیری الکتریکی دارند.

    ولی میدانهایی که توسط آنها ایجاد می‌شود خیلی قوی نیست، اگر چه آلیاژهای مخصوصی که اخیرا بدست آمده‌اند داشتن آهنربای دائمی قوی که خواص مغناطیسی خود را برای مدت مدیدی حفظ کنند امکان پذیر ساخته است.

    از جمله این آلیاژها ، مثلا فولاد-کبالت است که شامل حدود 50% آهن ، 30% کبالت و مخلوطهایی از تنگستن ، کروم و کربن است.

    عیب دیگر آهنربای دائمی این است که القای مغناطیسی آنها نمی‌تواند به سرعت تغییر کنند.

    از این نظر ، سیملوله‌های حامل جریان (آهنرباهای الکتریکی) بسیار مناسبند.

    زیرا با تغییر جریان در سیم پیچ سیملوله می‌توان میدان آنها را به آسانی تغییر داد.

    با قرار دادن هسته آهنی داخل سیملوله ، میدان آن را می‌توان صدها هزار بار افزایش داد.

    بیشتر آهنرباهای الکتریکی که در مهندسی بکار می‌روند چنین ساختمانی دارند.

    ساخت آهنربای الکتریکی ساده آهنربای الکتریکی ساده را می‌توان در منزل ساخت.

    کافی است که چندین دور سیم عایق شده‌ای را بر یک میله آهنی (پیچ یا میخ ، بپیچانیم و دو انتهای سیم را به یک منبع dc نظیر انبار ، یا پیل گالوانی وصل کنیم.

    بهتر است آهن ابتدا تابکاری شود، یعنی ، تا دمای سرخ شدن داغ شود.

    مثلا در کوره گرم و سپس به آرامی سرد شود.

    سیم پیچ باید توسط رئوستایی با مقاومت 1W تا 20W به باتری وصل شود، بطوری که جریان مصرف شده از باتری خیلی شدید نباشد.

    گاهی آهنرباهای الکتریکی شکل نعل اسب را دارند که برای نگه داشتن بار بسیار مناسبترند.

    ساختار آهنربای الکتریکی میدان پیچه با هسته آهنی بسیار قویتر از پیچه بدون هسته است، زیرا آهن درون پیچه شدیدا مغناطیده و میدان آن بر میدان پیچه منطبق است.

    ولی ، هسته‌هایی آهنی که در آهنرباهای الکتریکی برای تقویت میدان بکار می‌روند، فقط تا حدود معینی مقرون به مساحت‌اند.

    در واقع ، میدان آهنرباهای الکتریکی عبارت است از برهمنهی میدان حاصل از سیم ‌پیچ حامل جریان و میدان هسته مغناطیده ، برای جریانهای ضعیف ، میدان دوم به مراتب قویتر از میدان اولی است.

    وقتی که میدان در سیم پیچ افزایش می‌یابد، ابتدا این دو میدان به یک میزان معینی متناسب با جریان افزایش می‌یابند، بطوری که نقش هسته تعیین کننده می‌ماند.

    ولی ، با افزایش بیشتر جریانی که از سیم پیچ می‌گذرد، مغناطش آهن کند می‌شود و آهن به حالت اشباع مغناطیسی نزدیک می‌شود.

    وقتی که عملا تمام جریانهای مولکولی موازی شدند، افزایش بیشتر جریانی که از سیم ‌پیچ می‌گذرد نمی‌تواند چیزی بر مغناطش آهن اضافه کند، در حالی که میدان سیم‌ پیچ به زیاد شدن متناسب با جریان ادامه می‌دهد.

    هرگاه جریان شدید از سیم‌ پیچ (برای دقت بیشتر ، در لحظه‌ای که تعداد آمپر ـ دورها در متر به 106 نزدیک می‌شود.) بگذارند، میدان حاصل از سیم ‌پیچ بسیار قویتر از میدان هسته آهنی اشباع شده می‌شود.

    بطوری که هسته عملا بی‌فایده می‌شود و فقط ساختمان آهنربای الکتریکی را پیچیده می‌کند.

    به این دلیل ، آهنرباهای الکتریکی ، پر قدرت بدون هسته آهنی ساخته می‌شوند.

    آهنربای الکتریکی پر قدرت تهیه آهنرباهای الکتریکی پرقدرت مسأله انقلاب تکنولوژیک بسیار پیچیده‌ای است.

    در واقع ، برای اینکه بتوانیم جریانهای بزرگی را بکار بریم، سیم‌پیچها باید از سیم کلفتی ساخته شوند.

    در غیر این صورت ، سیم‌ پیچ شدیدا گرم و حتی گداخته می‌شود.

    گاهی بجای سیم از لوله‌های مسی استفاده می‌شود، که در آن جریان نیرومند آب برای خنک کردن سریع دیواره‌های لوله که جریان از آن می‌گذرد گردش می‌کند.

    ولی با سیم ‌پیچی که از سیم کلفت یا لوله ساخته شده است داشتن تعداد زیادی دور در واحد طول ناممکن است.

    از طرف دیگر ، استفاده از سیم نازک تعداد دورهای زیادی را در واحد متر ممکن می‌سازد، نمی‌گذارد تا جریانهای زیاد را بکار بریم.

    پیشرفت زیادی را در ایجاد میدانهای مغناطیسی بدست آمده به بهره گیری از ابررسانا‌ها در سیم پیچهای مغناطیسها مربوط می‌شود، که بکار بردن جریانهای شدید را مقدور می‌سازد.

    تکنیک کاپیتزا کاپیتزا (P.L.

    kapitza) فیزیکدان شوروی سابق راه هوشمندانه‌ای را برای بیرون آمدن از این وضع پیشنهاد کرد.

    او جریانهای عظیم 104 آمپر را برای مدت بسیار کوتاهی حدود 0.01 s از سیملوله‌ای گذرانید.

    در این مدت ، سیم ‌پیچ سیملوله خیلی شدید گرم نشد، در حالی که میدانهای مغناطیسی کوتاه مدت شدیدی بدست آمده بودند.

    البته او وسایل خاصی را ترتیب داد که برای ثبت نتایج آزمایشهایی که در آنها اثر میدان مغناطیسی پرقدرت حاصل در سیملوله برای اجسام گوناگون مورد بررسی قرار می‌گرفتند.

    در اغلب کاربردهای فنی ، تعداد آمپر ـ دورها در سیم ‌پیچهای آهنرباهای الکتریکی میدانهای نسبتا شدید می‌توان بدست آورد (با القای چند تسلا(.

    کاربرد آهنربای الکتریکی دید کلی : بیشتر کاربردهای فنی آهنربای الکتریکی بر توانایی جذب و نگهداری اجسام آهنی مبتنی است.

    در این کاربردها نیز آهنربای الکتریکی نسبت به آهنرباهای دائمی امتیازهای چشم گیری دارند.

    زیرا تغییر جریان داخلی آهنربای الکتریکی تغییر سریع نیروی بالابرنده آن را امکان پذیر می‌سازد.

    نیروی آهنربایی : نیرویی که در آهنربایی با آن اجسام آهنی را جذب می‌کند با افزایش فاصله بین آهنربا و آهن به تندی کاهش می‌یابد.

    به این دلیل ، نیروی بالابرنده آهنربای الکتریکی ، معمولا با نیرویی معین می‌شود که بر آهن واقع در مجاورت بلافصله خود وارد می‌کند.

    به عبارت دیگر ، نیروی بالابرنده یک آهنربا مساوی نیرویی است که برای جدا کردن آن تکه تمیزی از آهن صاف که جذب آن شده لازم است.

    آهنربای الکتریکی با نیروی بالا برندگی زیاد : برای بدست آوردن آهنربای الکتریکی با نیروی بالا برنده تا حد امکان زیاد ، باید سطح تماس بین قطبهای آهنربا و جسم آهنی جذب شده (معروف به جوشن) را افزایش داد، و سعی کرد تا تمام خطوط میدان مغناطیسی فقط از آهن بگذرد، یعنی تمام فواصل هوا یا شکاف‌های بین جوشن و قطب‌های آهنربا حذف شوند.

    برای این منظور باید سطوح قوه تغذیه می‌شود می‌تواند باری به جرم 80 تا 100Kg را نگه دارد.

    کاربرد آهنرباهای الکتریکی با نیروی بالا برندگی زیاد از آهنرباهای با نیروی بالابرهای بزرگ در مهندسی برای مقاصد گوناگونی استفاده می‌شود.

    مثلا ، جرثقیلهایی که با آهنربای الکتریکی کار می‌کنند، در کارخانه‌های استخراج فلز و فلزکاری برای حمل تکه‌های آهن یا ادوات که باید روی آن آشکار شود جذب آهنربای الکتریکی نیرومندی می‌شود.

    کافی است که جریان را وصل کنیم تا جسم در هر وضعی بر میز کار ثابت شود، یا جریان را قطع کنیم تا جسم رها شود.

    برای جدا کردن مواد مغناطیسی از اجسام غیر مغناطیسی ، نظیر جداسازی سنگ‌آهن از کلوخ «جداسازی مغناطیسی) ، جدا کننده‌های مغناطیسی به کار می‌روند، که در آنها ماده‌ای که باید تصفیه شود از میدان مغناطیسی نیرومند آهنربای الکتریکی می‌گذرند.

    این میدان تمام ذرات مغناطیسی را از ماده جدا می‌کند.

    آهنربای الکتریکی پیشرفته : اخیرا آهنرباهای الکتریکی پرقدرت با سطوح عظیم قطبها کاربردهای مهمی در ساختمان شتابدهنده‌ها یافته‌اند، یعنی وسایلی که در آنها ذرات باردار الکتریکی الکترونها و پروتونها) تا سرعتهای بسیار بالایی که به انرژی 108 تا 109 الکترون ولت مربوطند، شتاب داده می شوند.

    باریکه هایی از چنین ذرات که با سرعت بسیار زیادی حرکت می‌کنند ابزار عمده ای برای بررسی ساختار اتمی‌اند.

    آهنرباهایی که در این وسایل به کار می‌روند حجم‌های عظیمی دارند.

    آهنرباهای الکتریکی با قطب های مخروط ناقص : وقتی که لازم باشد میدان مغناطیسی بسیار نیرومندی را فقط در ناحیه کوچکی بدست می‌آوریم، آهنرباهای الکتریکی با قطب‌هایی به شکل مخروط ناقص به کار می‌روند.

    آن گاه در فضای کوچک بین آنها میدانی با القای مغناطیسی با 5T را می‌توان به آسانی به دست آورد.

    چنین آهنرباهای الکتریکی‌ای عمدتا در آزمایشگاه‌های فیزیک برای آزمایش‌هایی با میدان مغناطیسی نیرومند به کار می روند.

    کاربردهای پزشکی آهنرباهای الکتریکی : انواع دیگر آهنربای الکتریکی نیز برای مقاصد خاصی طراحی شده اند.

    مثلا ، پزشک‌ها برای خارج کردن براده‌های آهن که تصادفی وارد چشم شده باشند از آهنربای الکتریکی استفاده می‌کنند.

    برای خارج ساختن سوزن و سایر اشیا تیز فرو رفته در پا و سایر اعضای بدن از آهنرباها استفاده می‌شود.

    پرتوی کاتدی چگونگی شکل گیری پرتوهای کاتدی وقتی که مقدار گاز داخل لوله تخلیه الکتریکی کاهش می‌یابد، فضای تاریک کاتد ، بیشتر و ستون مثبت کوتاهتر و روشنایی آن کمتر می‌شود.

    با کاهش بیشتر فشار تابانی باز هم ضعیفتر می‌شود و شیشه لوله در مجاورت کاتد شروع به تابانی مختصری می‌کند.

    وقتی که فشار تا 0.001میلیمتر جیوه افت کند، تابانی گاز عملا متوقف می‌شود، درحالی که تمام سطح شیشه لوله ، نور درخشانی (معمولا سبز) گسیل می‌دارد.

    اگر هوا باز هم با پمپ تخلیه بیشتر خارج شود، تابانی شیشه سبز ضعیف‌تر می‌شود.

    با شروع فشار از 0.00001 تا 0.0001 میلیمتر جیوه این تابانی بکلی محو می‌شود و تخلیه خاتمه می‌پذیرد.

    تابانی سبز شیشه را چگو نه می‌توان توضیح داد؟

    اگر به آند لوله تخلیه گاز ، شکل معینی داده شود، تصویر سایه آند بر شیشه ظاهر می‌شود، به ترتیبی که گویی کاتد ، چشمه نور کوچکی است.

    در نتیجه ، تابانی شیشه ، به دلیل تولید نور از پرتوهای گسیل شده از کاتد است.

    آنها از صفحه فلزی آند نمی‌گذرند و تصویر سایه آن بر شیشه تشکیل می‌شود.

    این پرتوها ، پرتوهای کاتدی نامیده شده‌اند.

    ظهور و آشکار سازی پرتوهای کاتدی پرتوهای کاتدی ، نه فقط شیشه بلکه اجسام دیگر را نیز به تابانی وا می‌دارند.

    اجسام مختلف نوری ، رنگ‌های مختلف گسیل می‌دارند، مثلا گچ ، تابانی قرمز رنگ و سولفید روی ، نور سبز روشن ایجاد می‌کنند و نظایر آن.

    این تابانی را ، مثلا با قرار دادن تکه‌هایی از اجسام معدنی مختلف در بین کاتد و آند لامپ تخلیه گازی ، می‌توان مشاهده کرد.

    بنابرین ، اگر چه پرتوهای کاتدی ، نامرئی‌اند، می‌توان از تابانی اجسامی که با آنها بمباران شده‌اند، وجودشان را به سهولت آشکار کرد.

    با پوشش سطح اجسام با اجسامی که بر اثر پرتوهای کاتدی تابان می‌شوند، پرده های لیمان بدست می‌آید ( لیمان Lumines Cent را از کلمه یونانی Lumen به معنی " نور " گرفته‌اند ) که برای مشاهده پرتوهای کاتدی ، مناسب هستند.

    در چنین صفحه ای ، در امتداد لوله در زاویه کوچکی نسبت به محور آن ، می‌توان امتداد پرتوهای کاتدی را در لوله به آسانی ردیابی کرد.

    برای سهولت مشاهده ، دریچهای با شکاف دراز ، جلوی پرده قرار می‌دهند.

    این دریچه ، بخشی از باریکه کاتدی را قطع می‌کند و رد روشن باریکی بر پرده لیمان باقی می‌گذارد.

    نیروی محرکه الکتریکی اطلعات اولیه اگر در سلول دانیل ، محلولهای 1M از ZnSO4 و 1M از CuSO4 بکار رفته باشد، آن سلول را با نماد گذاری زیر نشان می‌دهیم: (Zn(s)|Zn2+(1M)|Cu2+(1M)|Cu(s که در ان ، خطوط کوتاه عمودی ، حدود فازها را نشان می‌دهند.

    بنابر قرارداد ، ماده تشکیل دهنده آند را اول و ماده تشکیل دهنده کاتد را در آخر می‌نویسیم و مواد دیگر را به ترتیبی که از طرف آند به کاتد با آنها برخورد می‌کنیم، میان آنها قرار می‌دهیم.

    جریان الکتریکی تولید شده در یک سلول ولتایی ، نتیجه نیروی محرکه الکتریکی (emf) سلول است که بر حسب ولت اندازه گیری می‌شود.

    هرچه تمایل وقوع واکنش سلول بیشتر باشد، نیروی محرکه الکتریکی آن بیشتر خواهد بود.

    اما emf یک سلول معین ، به دما و غلظت موادی که در آن بکار رفته است، نیز بستگی دارد.

    emf استاندارد ْε یا emf استاندارد ، مربوط به نیروی محرکه سلولی است.

    که در آن ، تمام واکنش‌دهنده‌ها و محصولات واکنش ، در حالت استاندارد خود باشند.

    مقادیر ْε معمولا برای اندازه گیری‌هایی که در آن 25 درجه سانتی‌گراد به عمل آمده، معین شده است.

    البته حالت استاندارد یک جامد یا یک مایع ، خود آن جامد خالص یا مایع خالص است.

    حالت استاندارد یک گاز یا یک ماده خالص در یک محلول ، حالتی است که دارای فعالیت واحد ایده‌آل باشد.

    اما این حالت ایده‌آل ، به‌علت جاذبه‌های بین مولکولی و بین یونی ، عملا قابل حصول نیست.

    به همین علت ، تصحیحات لازم برای انحراف از حالت ایده آل بایستی به عمل آید.

    در این بحث فرض می‌کنیم که بتوانیم فعالیت یونها را با غلظت مولی آنها و فعالیت گازها را با فشار آنها برحسب اتمسفر نشان دهیم.

    از این رو ، با درنظر گرفتن این تقریب ، یک سلول استاندارد شامل یونهای با غلظت 1M و گازهایی ( اگر وجود داشته باشند ) با فشار 1atm خواهد بود.

    اندازه‌گیری emf هرگاه بخواهیم emf یک سلول را به‌عنوان میزان قابل اطمینانی برای تمایل وقوع واکنش آن سلول بکار بگیریم، ولتاژ سلول باید بیشترین مقداری باشد که بتوان از آن سلول بدست آورد.

    اگر به هنگام اندازه‌گیری ، مقدار محسوسی از الکتریسیته جریان پیدا کند، ولتاژ اندازه گیری شده ، ε ، به‌علت مقاومت درون سلول کاهش خواهد یافت.

    علاوه بر این ، وقتی که سلول جریان تولید می‌کند، واکنشهای الکترودی موجب تغییر غلظت و در نتیجه کاهش ولتاژ می‌شود.

    بنابراین ، emf یک سلول باید به طریقی اندازه‌گیری شود که الکتریسیته محسوسی در سلول جاری نشود.

    این کار با استفاده از پتانسیل‌سنج صورت می‌گیرد.

    مدار پتانسیل سنج شامل منبع جریانی با ولتاژ تغییر پذیر و وسیله ای برای اندازه‌گیری این ولتاژ است.

    سلول مورد مطالعه به نحوی که به مدار پتانسیل سنج متصل می‌شود که emf آن با emf منبع جریان پتانسیل سنج مقابله کند.

    emf برگشت پذیر اگر emf سلول ، بیشتر از emf پتانسیل سنج باشد، الکترونها در جهت عادی ، یعنی در جهت عادی ، یعنی در جهت تخلیه خودبخودی این نوع سلول ، جریان پیدا می‌کنند.

    از طرف دیگر ، اگر emf منبع جریان پتانسیل سنج بیش از emf سلول باشد، الکترونها در جهت مخالف جریان پیدا می‌کنند و این موجب می‌شود که واکنش سلول در جهت عکس صورت گیرد.

    هرگاه این دو نیروی محرکه الکتریکی ، دقیقا با یکدیگر برابر باشند، الکترونها جریان پیدا نمی‌کنند.

    این ولتاژ ، emf برگشت پذیر سلول می‌باشد.

    emf یک سلول دانیل استاندارد برابر با 1,10 V است.

    محاسبه emf قوانین فارادی درباره واکنشهای سلولهای ولتایی و همچنین سلولهای الکترولیتی بکار می‌آید.

    اما باید به این نکته توجه داشت که الکتریسیته بوسیله نیم واکنشهای اکسایش و کاهش که همزمان در کاتد و آند صورت می‌گیرند، تولید می‌شود و سلول در صورتی جریان تولید می‌کند که هر دو نیم واکنش صورت گیرند.

    بنابراین ، از اکسایش 1mol فلز روی ، هنگامی دو فارادی الکتریسیته تولید می‌شود که همراه با آن ، 1mol یون 2+Cu در کاتد کاهش یابد.

    معادلات جزئی: آند Zn → Zn2+ + 2e کاتد 2e + Cu2+ → Cu وقتی که برحسب مول بیان می‌شوند، نمایانگر به جریان افتادن 2N الکترون (N عدد آووگادرو است) یا تولید 2F الکتریسیته است.

    در یک سلول ، مقدار انرژی الکتریکی تولید شده ، برحسب ژول برابر با حاصلضرب مقدار الکتریسیته حاصل ، برحسب کولن ، در emf سلول ، برحسب ولت است.

    بنابراین انرژی الکتریکی تولید شده از واکنش 1mol یونهای مس II را می‌توان به‌صورت زیر حساب کرد: 96500C *2 (1,10V)=212000J = 212 KJ یک ولت کولن یک ژول است.

    Emf بکار رفته در این محاسبه ، emf برگشت پذیر ( ْε ) سلول دانیل استاندارد و از این رو ، ماکسیمم ولتاژ این سلول است.

    پس ، مقدار انرژی محاسبه شده (212KJ) ماکسیمم کاری است که از عملکرد این نوع سلول بدست می‌آید.

    بیشترین کار خالصی که می‌توان از یک واکنش شیمیایی که در فشار و دمای ثابت انجام می‌گیرد، بدست آورد، میزانی از کاهش انرژی آزاد گیبس این سیستم است.

    برای سلول دانیل استاندارد ، G∆ برابر -212KJ است.

    از این رو: G=-nFε∆ که در آن ، n تعداد مولهای الکترون منتقل شده در واکنش (یا تعداد فارادیهای تولید شده) ، F مقدار فارادی برحسب واحدهای مناسب و ε نیروی محرکه الکتریکی برحسب ولت است.

    اگر F را به صورت 96485C بیان کنیم، G∆ برحسب ژول بدست می‌آید.

    تغییر انرژی آزادی که از emf استاندارد ، ْε حاصل می‌شود، با نماد ْG∆ مشخص می‌شود.

    تغییر انرژی آزاد یک واکنش ، میزان تمایل وقوع آن واکنش را نشان می‌دهد.

    اگر برای ایجاد تغییبری در یک سیستم لازم باشد که بر سیستم انجام شود، آن تغییر خود بخود نخواهد بود.

    یک تغییر خودبخود ، در فشار و دمای ثابت ، آن گونه تغییری است که بتوانیم از آن ، کار خالص بدست آوریم.

    پس برای هر واکنش خودبخود ، انرژی سیستم کاهش می‌یابد، یعنی G∆ منفی است.

    چون G=-nFε∆ است، فقط وقتی که ε مثبت باشد، واکنش سلول خودبخود خواهد بود و سلول می‌تواند به عنوان منبع انرژی الکتریکی بکار آید مقاومت الکتریکی یک مقاومت ایده‌ال عنصری است با یک مقاومت الکتریکی که صرفنظر از ولتاژ اعمالی به دو سرش یا جریان الکتریکی عبوری از آن ، ثابت می‌ماند.

    اما بدلیل اینکه مقاومتهای جهان واقعی نمی‌توانند این شرایط ایده‌ال را برآورده سازند، آنها را بگونه‌ای طراحی می‌کنند که در برابر تغییرات دما و دیگر عوامل محیطی ، نوسانات کمی در مقاومت الکتریکی شان ایجاد شود.

    مقاومتها ممکن است که ثابت یا متغییر باشند.

    مقاومتهای متغیر پتانسیومتر یا رئوستا نیز خوانده می‌شوند و این اجازه را می‌دهند که مقاومت وسیله توسط تنظیم یک میله یا لغزش یک ابزار کنترلی ، تغییر کند.

    برخی از مقاومتها بلند و نازک هستند و ماده مقاوم حقیقی در وسط آنها قرار دارد و یک پایه هادی در هر انتهای آن نصب شده است.

    به این مقاومت بسته محوری گفته می‌شود.

    تصویر سمت راست یک ردیف از مقاومتهایی را نشان می‌دهد که عموما در یک بسته بندی قرار داده می‌شوند.

    مقاومتهای استفاده شده در کامپیوترها و دیگر وسایل ، نوعا خیلی کوچکتراند و اغلب در بسته‌های با پایه سطحی (فن آوری پایه سطحی) بدون سیمهای رابط بکار می‌روند.

    مقاومتهای با توان بالاتر را در بسته‌های محکمتری قرار می‌دهند و بگونه‌ای طراحی شده‌اند که گرما را بطور موثری از بین ببرند، اما تمامی آنها دارای همان ساختار قبلی مقاومتها هستند.

    مقاومتها به عنوان بخشی از شبکه‌های الکتریکی بکار می‌روند و در علم میکرو الکترونیک و ابزارهای نیمه هادی شرکت دارند.

    اندازه گیری دقیق یک مقاومت بصورت نسبت ولتاژ به جریان است و واحد آن در دستگاه SI، اهم است.

    یک عنصر دارای مقاومت 1 اهم است اگر یک ولتاژ 1 ولتی دو سر عنصر منجر به یک جریان 1 آمپر شود که معادل جریان یک کولمب بار الکتریکی (تقریبا 6.242506 X 10 18 الکترون) در ثانیه در جهت مخالف است.

    یک جسم فیزیکی نوعی مقاومت است.

    اکثر فلزات، مواد هادی هستند و در برابر جریان الکتریسته مقاومت کمی دارند.

    بدن انسان ، یک تکه پلاستیک ، یا حتی یک خلا دارای مقاومتهایی هستند که قابل اندازه گیری است.

    موادی که دارای مقاومتهای بسیار بالایی هستند عایق نامیده می‌شوند.

    رابطه بین ولتاژ ، جریان و مقاومت در یک جسم توسط یک معادله ساده که از قانون اهم گرفته شده و اغلب با آن اشتباه می‌شود، بیان می‌شود: V = IR که در آن V ولتاژ دو سر مقاومت بر حسب ولت ، I جریان عبور کننده از مقاومت بر حسب آمپر و R مقدار مقاومت بر حسب اهم است.

    اگر V و I دارای یک رابطه خطی باشند که به مفهوم ثابت بودن R در یک محدوده است، آنگاه این ماده در آن محدوده اهمی خوانده می‌شود.

    یک مقاومت ایده آل دارای مقاومت ثابت در تمامی فرکانسها و مقادیر ولتاژ و جریان است.

    مواد ابر رسانا در دماهای بسیار پایین دارای مقاومت صفر هستند.

    عایقها ( نظیر آزمایشهای مربوط به هوا ، الماس ، یا مواد غیر هادی) ممکن است دارای مقاومتهایی بسیار بالا (اما نه بینهایت) باشند.

    لکن تحت ولتاژهای به میزان کافی زیاد، دچار شکست می شوند و جریان بزرگی را از خود عبور می‌دهند.

    مقاومت یک عنصر را می‌توان از مشخصه‌های فیزیکی آن محاسبه کرد.

    مقاومت با طول عنصر و مقاومت ویژه (یک خاصیت فیزیکی ماده) آن بطور مستقیم متناسب است و با سطح مقطع آن رابطه عکس دارد.

    معادله محاسبه مقاومت یک بخش ماده مانند زیر است: R = rL/A که در آن r مقاومت ویژه ماده ، L طول و A مساحت سطح مقطع است.

    این معادله را می‌توان برای موادی که از نظر شکل پیچیده‌ترند، بصورت انتگرالی نیز نوشت.

    اما این فرمول ساده برای سیمهای استوانه‌ای و اغلب هادیهای عمومی قابل استفاده است.

    این مقدار می‌تواند در فرکانسهای بالا به علت اثر پوستی ، که سطح مقطع در دسترس را کاهش می‌دهد، تغییر کند.

    مقاومتهای استاندارد را در مقادیری از چند میلی اهم تا حدود یک گیگا اهم به فروش می‌رسانند.

    تنها محدوده مشخصی از مقادیر که مقادیر ترجیح داده شده نام دارند در دسترس هستند.

    در عمل ، اجزای گسسته فروخته شده به عنوان مقاومت ، یک مقاومت کامل آنگونه که در بالا تعریف شد، نیستند.

    مقاومتها معمولا توسط خطایشان (حداکثر تغییرات مورد انتظار نسبت به مقاومت مشخص شده) بیان می‌شوند.

    در یک مقاومت با رنگ کد گذاری شده باند منتهی الیه سمت راست.

    اگر به رنگ نقره‌ای باشد خطای 10 درصد ، اگر به رنگ طلایی باشد خطای 5 درصد ، اگر به رنگ قرمز باشد خطای 2 درصد و اگر به رنگ قهوه‌ای باشد خطای 1 درصد را نشان می‌دهد.

    مقاومتهای با خطای کمتر هم وجود دارند که مقاومتهای دقیق خوانده می‌شوند.

    یک مقاومت دارای حداکثر ولتاژ و جریانی است که فراتر از آنها ، مقاومت ممکن است تغییر کند (در بعضی موارد به شدت) یا از نظر فیزیکی از بین برود (برای مثال بسوزد).

    اگر چه که برخی از مقاومتها دارای ولتاژ و جریان نامی‌اند، اغلب آنها توسط یک توان فیزیکی حداکثر که توسط اندازه فیزیکی تعیین می‌شود، ارزیابی می‌شوند.

    عموما توان نامی برای مقاومتهای کامپوزیت کربن و مقاومتهای ورقه فلزی 1.8 وات ، 1.4 وات و 1.2 وات است.

    مقاومتهای ورق فلزی نسبت به مقاومتهای کربنی در برابر تغییرات دما و گذر زمان پایدارترند.

    مقاومتهای بزرگتر قادرند که گرمای بیشتری را بدلیل سطح وسیعترشان از بین ببرند.

    مقاومتهای سیم پیچی شده و پر شده با شن هنگامی بکار می‌روند که توان نامی بالاتری مانند 20 وات مورد نیاز باشد.

    بعلاوه تمامی مقاومتهای حقیقی کمی خواص سلفی و خازنی از خود نشان می‌دهند که رفتار دینامیکی مقاومت ، ناشی از معادله ایده آل آن را تغییر می‌دهد.

    هر کدام از مقاومتهای یک ساختار مداری سری و موازی دارای اختلاف پتانسیل (ولتاژ) یکسان هستند.

    برای محاسبه مقاومت معادل کل آنها: Req-1 = 1/R1 + 1/R2 + … + 1/Rn خاصیت موازی بودن را می‌توان برای ساده سازی معادله ، با دو خط موازی (مانند هندسه) در معادلات نمایش داد.

    برای دو مقاومت موازی داریم: (Req = R1R2/(R1 + R2 جریان هر مقاومت در مدارهای سری و موازی ثابت است، اما ولتاژ در طول هر مقاومت ممکن است متفاوت باشد.

    مجموع اختلاف پتانسیلها (ولتاژ) برابر ولتاژ کلی است.

    برای محاسبه مقاومت کلی آنها: R = R1 + R2 + … + Rn یک شبکه مقاومتی که ترکیبی از مدارهای سری و موازی است را می‌توان به اجزا کوچکتری تجزیه کرد که یکسان یا غیر یکسانند.

    برای مثال: Req = R1R2/(R1 + R2) + R3 مقاومتهای متغیر مقاومت متغیر مقاومتی است که مقدارش می‌تواند توسط یک حرکت مکانیکی تعیین شود، برای مثال توسط دست تنظیم شود.

    مقاومتهای متغیر می‌توانند از نوع ارزان و تک دور یا از نوع چند دور با یک عنصر مارپیچی باشند.

    برخی از آنها حتی دارای نمایشگر مکانیکی تعداد دور نیز هستند.

    بطور سنتی مقاومتهای متغیر نامطمئن بوده‌اند، چرا که سیم یا فلز خورده یا فرسوده می‌شوند.

    (یک روش دیگر کنترل که در واقع یک مقاومت نیست اما شبیه آن عمل می‌کند، شامل یک سیستم سنسور فتو الکتریک است که چگالی نوری یک ورقه را اندازه می‌گیرد.

    بدلیل اینکه سنسور ورقه را لمس نمی‌کند، پوسیدگی رخ نمی‌دهد.) یک پتانسیومتر نوعی از مقاومتهای متغییر است که بسیار عام است.

    یکی از استفاده‌های عمومی آن به عنوان کنترل صدا در تقویت کننده‌های صوتی است.

    یک واریستور اکسید فلزی ، یا MOV نوع بخصوصی از مقاومت است که دارای دو مقدار مقاومت بسیارمتفاوت است، یک مقاومت بسیار بالا در ولتاژ پایین (زیر ولتاژ راه انداز) و یک مقاومت بسیار کم در ولتاژ بالا (بالاتر از ولتاژ راه انداز).

    این نوع از مقاومت معمولا برای حفاظت اتصال کوتاه در برقگیر تیر برق خیابانها یا به عنوان یک اسنابر استفاده می‌‌‌شود.

    یک مقاومت با ضریب دمایی مثبت/PTC یک مقاومت وابسته به دما است که دارای یک ضریب دمایی مثبت است.

    وقتی که دما افزایش می‌یابد، مقاومت هم زیاد می‌شود.

    PTC ها اغلب در تلویزیونها بصورت سری با سیم پیچ دمغناطیس کننده یافت می‌شوند که یک جرقه جریان کوتاه را از طریق سیم پیچ در هنگام روشن کردن تلویزیون ایجاد می‌کند.

    یک نسخه تخصصی یک PTC چند سوییچ است که مانند یک فیوز خود تعمیر عمل می‌کند.

    یک مقاومت با ضریب دمایی منفی/NTC نیز یک مقاومت وابسته به دماست، اما دارای یک ضریب دمایی منفی است.

    وقتی که دما افزایش می‌یابد مقاومت NTC کاهش می‌یابد.

    NTC ها عموما در آشکار سازهای دمای ساده و در ابزارهای اندازه گیری بکار می‌روند.

  • فهرست:

    ندارد.


    منبع:

    ندارد.

انرژی الکتریکی چیست ؟ میدانیم که هر ماده از تعداد بسیار اتم تشکیل شده است که هر اتم نیز از سه قسمت 1-نوترون 2- پروتن 3-الکترون تشکلیل شده است تعداد الکترونها با تعداد پروتنها در حالت عادی (خنثی) برابر است الکترون دارای بار منفی و پروتن دارای بار مثبت میباشند که الکترونها به دور(( پروتن و نوترون )) (هسته اتم) با سرعت بسیار زیادی میچرخند در اثر این چرخش نیروی گریز از مرکزی بوجود ...

. الکترونها را می توان به آسانی از یک اتم به اتم دیگر منتقل کرد. زمانی که این الکترونها در بین اتمها حرکت می کنند، جریان الکتریسیته یا برق تولید می شود. یک قطعه سیم را بردارید. الکترونها از یک اتم به اتم دیگر عبور کرده و باعث ایجاد جریان برق از یک سمت به سمت دیگر می شود. الکترونها بسیار کوچک هستند. یک سکه مسی بیش از 1022´ 1 الکترون دارد . میزان عبور جریان الکتریسیته در مواد ...

نانو تکنولوژی علم خواص عجیب مواد از نانوتکنولوژی، بیوتکنولوژی و فناوری اطلاع رسانی به عنوان سه قلمرو علمی نام می برند که انقلاب سوم صنعتی را شکل می دهد. از همین روست که کشورهای در حال توسعه که اغلب از دو انقلاب قبل جا مانده اند، می کوشند با سرمایه گذاری در این سه قلمرو، عقب ماندگی خود را جبران کنند. همان گونه که در این گزارش می خوانید، نانوتکنولوژی کاربردهای گسترده ای در تمام ...

الکتريسيته تئوري الکتروني اتم اتم از ذرات کوچکتري به نامهاي الکترون-پروتون ونوترون تشکيل شده است که الکترونها داراي بارمنفي،پروتونها داراي بار مثبت ونوترونها بدون بارند تعداد الکترونها و پروتونهاي يک اتم در حالت عادي برابرند پس بار اتم در حالت ع

مغناطیس: پدیده‌ای است که توسط آن مواد یک نیروی دافعه برروی مواد دیگر وارد می‌کنند. آهن- بعضی فولادها و بعضی املاح معدنی جزو این دسته مواد هستند. در واقعیت تمام مواد تحت تأثیر حضور یک میدان مغناطیسی تغییر جهت می‌دهند و میزان تأثیرپذیری آنها بقدری کم است که بدون وسایل مخصوصی آشکار نمی‌شوند. نیروهای مغناطیسی، نیروهای بنیادی هستند که بدلیل ذرات باردار الکتریکی بوجود می‌آیند.منشاء و ...

تنها جملات خطی در میدان الکتریکی حفظ شده اند ، و فرکانسهای زاویه ای به نوسانات طبیعی مربوط می شود و انتظار می رود تا در حضور میدان نوسان ناپدید گردند . ضرایب برای اولین تخمین صورت زیر ارائه داده شده است . که ما بجایی اختلال سریع در 0 ‏= t یک حد و یک افزایش آرام را در نظر گرفته ایم . با جایگزینی این نتیجه و ترکیب پیچیده آن در معادله ( 2 77 ) حاصل بدست می‌آید: به دلیل اینکه معادله ...

اثر مغناطیسی جریان الکتریکی تاریخچه: اثرهای ساده الکتریکی و مغناطیسی را از زمانهای قدیم می شناختند. حدود 600 سال قبل از میلاد یونانیان می دانستند که آهنربا آهن را جذب می کند، و کهربای مالیده به لباس چیزهای سبک مانند کاه را به سوی خود می کشد. با وجود این اختلاف بین جذب های الکتریکی و مغناطیسی تعیین نشده بود و این پدیده ها را از یک نوع در نظر می گرفتند. محقق برجسته: خط فاصل روشن ...

مقدمه موتورها مصرف‎‎کننده‎‎های عمده برق در اغلب کارخانه‎‎ها هستند. وظیفه یک موتورالکتریکی تبدیل انرژی الکتریسیته به‎ انرژی مکانیکی است. در یک موتور سه‎‎فاز AC جریان از سیم‎‎پیچ‎‎های موتور عبور کرده و باعث ایجاد میدان مغناطیسی دواری می‎شود که این میدان مغناطیسی محور موتور را می‎‎چرخاند. موتورها به‎‎‎گونه‎‎ای طراحی شده‎‎اند که این وظیفه را به‎‎‎خوبی انجام دهند. مهم‎‎ترین و ...

توان الکتریکی که اغلب به عنوان برق یا الکتریسیته شناخته می شود، شامل تولید و ارایه انرژی الکتریکی به میزان کافی برای راه اندازی لوازم خانگی، تجهیزات اداری، دستگاه های صنعتی و فراهم آوردن انرژی کافی برای روشنایی، پخت و پز، گرمای خانگی و صنعتی و فرایندهای صنعتی بکار می رود. تاریخچه اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیایی ای که در یک پیل الکترولیک از زمانی که الساندرو ولتا ...

دید کلی شیمی تجزیه نقش حیاتی را در توسعه علوم مختلف به عهده دارد، لذا ابداع فنون جدید تجزیه و بسط و تکامل روشهای تجزیه شیمیایی موجود ، آنقدر سریع و گسترده است که اندکی درنگ در تعقیب رویدادهای تازه سبب بوجود آمدن فاصله‌های بسیار زیاد علمی خواهد شد. نقش این فنون در فعالیتهای تولیدی روز به روز گسترده‌تر و پردامنه‌تر می‌گردد. امروزه ، کنترل کیفیت محصولات صنعتی و غیر صنعتی ، جایگاه ...

ثبت سفارش
تعداد
عنوان محصول