دانلود مقاله انتقال گرما و حرارت محاسبه انتقال گرما در سطوح نانومقیاس

Word 103 KB 10074 20
مشخص نشده مشخص نشده فیزیک - نجوم
قیمت قدیم:۱۶,۰۰۰ تومان
قیمت: ۱۲,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • محاسبه انتقال گرما در سطوح نانومقیاس دانشمندان با استفاده از یک نانونوک، با منبع گرمایی نانومقیاس، توانسته‌اند یک سطح موضعی را بدون تماس با آن گرم کنند؛ این کشف راهی به سوی ساخت ابزارهای گرمایی ذخیره اطلاعات و نانودماسنج‌ها خواهد بود.

    همه ساله نیاز بشر به ذخیره اطلاعات بیشتر و بیشتر می‌شود.

    درک چگونگی انتقال گرما در مقیاس نانو لازمه کاربرد این فناوری تأثیرگذار در ذخیره اطلاعات است.

    دانشمندان سراسر جهان سعی دارند تا فناوری‌های جایگزینی برای سیستم‌های ذخیره اطلاعات کنونی بیابند تا پاسخگوی نیاز روزافزون جوامع امروزی به ذخیره اطلاعات باشد؛ فناوری گرمایی ذخیره اطلاعات از جمله گزینه‌هایی است که به آن رسیده‌اند.

    در این روش، با استفاده از یک لیزر، دیسک مورد نظر برای ذخیره اطلاعات را گرم کرده و به این ترتیب فرایند ثبت مغناطیسی پایدار می‌شود، به طوری که نوشتن داده‌ها روی آن آسان‌تر شده، پس از خنک شدن آن می‌توان داده‌ها را مجدداً بازیابی نمود.

    با استفاده از این روش، مشکل بحرانی حد ابرپارامغناطیسی که دستگاه‌های ضبط مغناطیسی با آن مواجه‌اند، برطرف می‌شود.

    در روش‌های کنونی دانشمندان بیت‌های اطلاعاتی را که در دمای اتاق کار می‌کنند، تا اندازه معینی کوچک می‌کنند، اما این بیت‌ها با این کار از لحاظ مغناطیسی ناپایدار شده، از محل خود خارج می‌شوند، در نتیجه اطلاعات روی آنها پاک می‌شود.

    بررسی‌های اخیر دانشمندان فرانسوی درباره انتقال گرما بین نوک و سطح به پیشرفت مهمی در زمینه ذخیره گرمایی اطلاعات و دیگر کاربردها منجر شده است.

    آنها گرمایی را که بیشتر از طریق هوا و به شیوه رسانش، بین نوک سیلیکونی و یک سطح انتقال می‌یابد، محاسبه کردند.

    Pierre-Olivier Chapuis از محققان این گروه می‌گوید: ”انتقال گرما در سطح ماکروسکوپی به خوبی شناخته شده است (وقتی برخورد مولکول‌ها در حالت تعادل موضعی ترمودینامیکی باشد با تابع پخش فوریه بیان می‌شود).

    همچنین انتقال گرما را می‌توان در یک نظام بالستیک خالص (وقتی که هیچ برخوردی بین مولکول‌ها وجود ندارد) محاسبه نمود.

    اما محاسبه انتقال گرما در نظام میانی، وقتی که مولکول‌ها با هم برخورد دارند، همچنان یک چالش به شمار می‌آید.“ دانشمندان در آزمایش خود از یک نوک دارای منبع گرمایی به ابعاد 20 nm که در فاصله بین صفر تا 50 نانومتری بالای سطح قرار می‌گیرد، استفاده کرده‌اند.

    مولکول‌های هوای بین نوک و سطح، در تماس با این نوک داغ، گرم شده و روی سطح دیسک قرار می‌گیرند و گاهی هم قبل از آن با دیگر مولکول‌ها برخورد می‌کنند.

    این محققان برای اولین بار با استفاده از قانون بولتزمن درباره حرکت گازها، توانستند توزیع گرمایی در این مقیاس و نیز سطوح شارگرمایی را تعیین کنند.

    آنها نشان دادند که انتقال و انتشار گرما از نوک به سطح در مدت چند ده پیکوثانیه و بدون آن که تماس بین نوک و سطح برقرار شود، انجام می‌گیرد.

    آنها همچنین دریافتند که در فاصله کمتر از 10 nm این نوک داغ می‌تواند ضمن حفظ شکل، ناحیه‌ای به پهنای 35 nm را گرم کند و در بیشتر از این فاصله، شکل از بین رفته و لکه گرمایی به طور قابل توجهی افزایش می‌یابد.

    در این شکل گرما از نوک یک میکروسکوپ نیروی اتمی (AFM) به سطح منتقل می‌شود.

    ناحیه گرم شده باعث برخورد مولکول‌‌های هوا به یکدیگر شده، درنتیجه یک سطح موضعی معین بدون هیچ تماسی گرم می‌شود.

    با این روش که پیش‌بینی می‌شود تا سال دو هزار و ده به بازار راه یابد، می‌توان چگالی اطلاعاتی معادل تریلیون‌ها بیت (ترابایت) را دریک اینچ مربع جا داده و چگالی جریان را هم کمتر نمود.

    از این روش همچنین می‌توان در میکروسکوپ‌های گرمایی پیمایشی که مانند یک نانودماسنج، گرما و رسانش گرمایی در مقیاس نانو را حس می‌کنند، استفاده نمود.

    در این روش اطلاع از سطح شار گرمایی، برای تشخیص این که آیا به دمای بحرانی (مانند نقطه ذوب) رسیده‌ایم یا نه، بسیار مهم است.

    به گفته این محققان در این روش با کاهش گرمای منبع، می‌توان به بررسی دقیق‌تر نمونه نسبت به آنچه هم‌اکنون انجام می‌شود، پرداخت.

    انتقال گرما به وسیله نانوسیالات چکیده اخیراً استفاده از نانوسیالات که در حقیقت سوسپانسیون پایداری از نانوفیبرها و نانوذرات جامد هستند، به عنوان راهبردی جدید در عملیات انتقال حرارت مطرح شده است.

    تحقیقات اخیر روی نانوسیالات، افزایش قابل توجهی را در هدایت حرارتی آنها نسبت به سیالات بدون نانوذرات و یا همراه با ذرات بزرگ‌تر (ماکرو ذرات) نشان می‌دهد.

    از دیگر تفاوت‌های این نوع سیالات، تابعیت شدید هدایت حرارتی از دما، همچنین افزایش فوق‌العاده فلاکس حرارتی بحرانی در انتقال حرارت جوشش آنهاست.

    نتایج آزمایشگاهی به دست آمده از نانوسیالات نتایج قابل بحثی است که به عنوان مثال می‌توان به انطباق نداشتن افزایش هدایت حرارتی با تئوری‌های موجود اشاره کرد.

    این امر نشان دهنده ناتوانی این مدل ها در پیش‌بینی صحیح خواص نانوسیال است.

    بنابراین برای کاربردی کردن این نوع از سیالات در آینده و در سیستم‌های جدید، باید اقدام به طراحی و ایجاد مدل‌ها و تئوری‌هایی شامل اثر نسبت سطح به حجم و فاکتورهای سیالیت نانوذرات و تصحیحات مربوط به آن کرد.

    1.

    مقدمه سیستم‌ های خنک کننده، یکی از مهم‌ترین دغدغه‌های کارخانه‌ها و صنایعی مانند میکروالکترونیک و هر جایی است که به نوعی با انتقال گرما روبه‌رو باشد.

    با پیشرفت فناوری در صنایعی مانند میکروالکترونیک که در مقیاس‌های زیر صد نانومتر عملیات‌های سریع و حجیم با سرعت‌های بسیار بالا (چند گیگا هرتز) اتفاق می‌افتد و استفاده از موتورهایی با توان و بار حرارتی بالا اهمیت به سزایی پیدا می‌کند، استفاده از سیستم‌های خنک‌کننده پیشرفته و بهینه، کاری اجتناب‌ناپذیر است.

    بهینه‌سازی سیستم‌های انتقال حرارت موجود، در اکثر مواقع به وسیله افزایش سطح آنها صورت می‌گیرد که همواره باعث افزایش حجم و اندازه این دستگاه‌ها می‌شود؛ لذا برای غلبه‌ بر این مشکل، به خنک کننده‌های جدید و مؤثر نیاز است و نانو سیالات به عنوان راهکاری جدید در این زمینه مطرح شده‌اند.

    [1] نانوسیالات به علت افزایش قابل توجه خواص حرارتی، توجه بسیاری از دانشمندان را در سال‌های اخیر به خود جلب کرده است، به عنوان مثال مقدار کمی (حدود یک درصد حجمی) از نانوذرات مس یا نانولوله‌های کربنی در اتیلن گلیکول یا روغن به ترتیب افزایش 40 و 150 درصدی در هدایت حرارتی این سیالات ایجاد می‌کند [2] [3]؛ در حالی که برای رسیدن به چنین افزایشی در سوسپانسیون‌های معمولی، به غلظت‌های بالاتر از ده درصد از ذرات احتیاج است؛ این در حالی است که مشکلات رئولوژیکی و پایداری این سوسپانسیون‌ها در غلظت‌های بالا مانع از استفاده گسترده از آنها در انتقال حرارت می‌شود.

    در برخی از تحقیقات، هدایت حرارتی نانوسیالات، چندین برابر بیشتر از پیش‌بینی تئوری‌ها است.

    از دیگر نتایج بسیار جالب، تابعیت شدید هدایت حرارتی نانوسیالات از دما [4] [5] و افزایش تقریباً سه برابری فلاکس حرارتی بحرانی آنها در مقایسه با سیالات معمولی است [6 و7].

    این تغییرات در خواص حرارتی نانوسیالات فقط مورد توجه دانشگاهیان نبوده در صورت تهیه موفقیت‌آمیز و تأیید پایداری آنها، می‌تواند آینده‌ای امیدوارکننده در مدیریت حرارتی صنعت را رقم بزند.

    البته از سوسپانسیون نانوذرات فلزی، در دیگر زمینه‌ها از جمله صنایع دارویی و درمان سرطان نیز استفاده شده است [8].

    به هر حال تحقیق در زمینه نانوذرات، دارای آینده‌ای بسیار گسترده است [9].

    شکل 1.

    تصاویر TEM از نانو سیال مس (چپ)، نانو ذرات اکسید مس (وسط) و ذرات کلوئیدی طلاسرب (راست) که در مطالعات مقاومت فصل مشترک استفاده شده اند.

    ذرات اکسید مس حالت خوشه ای دارند و کلوئید های طلاسرب توزیع مناسب و اندازه یکسان دارند.

    2.

    تهیه نانوسیالات بهبود خواص حرارتی نانوسیال احتیاج به انتخاب روش تهیه مناسب این سوسپانسیون‌ها دارد تا از ته‌نشینی و ناپایداری آنها جلوگیری شود.

    متناسب با کاربرد، انواع بسیاری از نانوسیالات از جلمه نانوسیال اکسید فلزات، نیتریت‌ها، کاربید فلزات و غیرفلزات که به وسیله یا بدون استفاده از سورفکتانت در سیالاتی مانند آب، اتیلن گلیگول و روغن به وجود آمده است.

    مطالعات زیادی روی چگونگی تهیه نانوذرات و روش‌های پراکنده‌سازی آنها درسیال پایه انجام شده است که در اینجا به طور مختصر چند روش متداول‌ را که برای تهیه نانوسیال وجود دارد ذکر می‌کنیم.

    یکی از روش‌های متداول تهیه نانوسیال، روش دو مرحله‌ای است [10].

    در این روش ابتدا نانوذره یا نانولوله معمولاً به وسیله روش رسوب بخار شیمیایی (CVD) در فضای گاز بی‌اثر به صورت پودرهای خشک تهیه می‌شود [11] [ شکل 1.

    وسط]، در مرحله بعد نانوذره یا نانولوله در داخل سیال پراکنده می‌شود.

    برای این کار از روش‌هایی مانند لرزاننده‌های مافوق صوت و یا از سورفکتانت‌ها استفاده می‌شود تا توده‌های نانوذره‌ای به حداقل رسیده و باعث بهبود رفتار پراکندگی شود.

    روش دو مرحله‌ای برای بعضی موارد مانند اکسید فلزات در آب، دیونیزه شده بسیار مناسب است [10] و برای نانوسیالات شامل نانوذرات فلزی سنگینی، کمتر موفق بوده است [12].

    روش دو مرحله‌ای دارای مزایای اقتصادی بالقوه‌ای است؛ زیرا شرکت‌های زیادی توانایی تهیه نانوپودرها در مقیاس صنعتی را دارند [13].

    بهبود خواص حرارتی نانوسیال احتیاج به انتخاب روش تهیه مناسب این سوسپانسیون‌ها دارد تا از ته‌نشینی و ناپایداری آنها جلوگیری شود.

    روش یک مرحله‌ای نیز به موازات روش دو مرحله‌ای پیشرفت کرده است؛ به طور مثال نانوسیالاتی شامل نانوذرات فلزی با استفاده از روش تبخیر مستقیم تهیه شده‌اند [2] و [12].

    در این روش، منبع فلزی تحت شرایط خلاء تبخیر می‌شود [14] [شکل 1.

    چپ].

    در این روش، تراکم توده نانوذرات به حداقل خود می‌رسد، اما فشار بخار پایین سیال یکی از معایب این فرایند محسوب می‌شود؛ ولی با این حال روش‌های شیمیایی تک مرحله‌ای مختلفی برای تهیه نانوسیال به وجود آمده است که از آن جمله می‌توان به روش احیای نمک فلزات و تهیه سوسپانسیون آن در حلال‌های مختلف برای تهیه نانوسیال فلزات اشاره کرد [16] [شکل 1.

    راست].

    مزیت اصلی روش یک مرحله‌ای، کنترل بسیار مناسب روی اندازه و توزیع اندازه ذرات است.

    شکل 2.

    ارتباط هدایت الکتریکی با جزء حجمی نانو ذرات، بر اساس تئوری میانگین متوسط برای نانو ذرات بسیار هادی (خط چین پایین) و مدل کلوخه های متراکم 3.

    انتقال حرارت در سیالات ساکن خواص استثنایی نانوسیالات شامل هدایت حرارتی بیشتر نسبت به سوسپانسیون‌های معمولی، رابطه غیرخطی بین هدایت وغلظت مواد جامد و بستگی شدید هدایت به دما و افزایش شدید فلاکس حرارتی در منطقه جوشش است.

    این خواص استثنایی، به همراه پایداری، روش تهیه نسبتاً آسان و ویسکوزیته قابل قبول باعث شده تا این سیالات به عنوان یکی از مناسب‌ترین و قوی‌ترین انتخاب‌ها در زمینه سیالات خنک کننده مطرح شوند.

    نتایج یکی از تحقیقات منتشر شده در زمینه تغییر هدایت حرارتی نانوسیال به عنوان تابعی از غلظت در شکل (2) آمده است.

    بیشترین تحقیقات روی هدایت حرارتی نانوسیالات، در زمینه سیالات حاوی نانوذرات اکسید فلزی انجام شده است [18].

    ماسودا افزایش 30 درصدی هدایت حرارتی را با اضافه کردن 3/4 درصد حجمی آلومینا به آب گزارش کرده است.

    لی [15] افزایش 15 درصدی را برای همین نوع نانوسیال با همین درصد حجمی گزارش کرده است که تفاوت این نتایج را ناشی از تفاوت در اندازه نانوذرات به‌کار رفته در این دو تحقیق می‌داند.

    قطر متوسط ذرات آلومینای بکاررفته در آزمایش اول 13نانومتر و در آزمایش دوم 33 نانومتر بوده است.

    زای و همکاران [20] [19] افزایش 20 درصدی را برای 50 درصد حجمی از همین نانوذرات گزارش کرده‌اند.

    گروه مشابهی [21] برای نانوذرات کاربید سیلیکون نیز به نتایج مشابهی رسیدند.

    لی بهبود نسبتاً کمتری را در هدایت حرارتی نانوسیالات حاوی نانوذرات اکسید مس، نسبت به نانوذرات آلومنیا مشاهده کرد؛ در حالی که ونگ [24] 17 درصد افزایش هدایت حرارتی را برای فقط 4/0 درصد حجمی از نانوذرات اکسید مس در آب گزارش کرده است.

    برای نانوسیال با پایه اتیلن گلیکول، افزایش بالای 40 درصد برای 3/0 درصد حجمی مس با متوسط قطر ده نانومتر گزارش شده است.

    پتل [5] افزایش بالای 21 درصد برای سوسپانسیون 11 درصد حجمی از نانوذرات طلا و نقره که به ترتیب در آب و تولوئن پراکنده شده بودند را مشاهده کرد.

    در مواردی هم هیچ افزایش قابل توجهی در هدایت مشاهده نشده است [23].

    اخیراً تحقیقات دیگری روی وابستگی هدایت به دما برای غلظت‌های بالای نانوذرات اکسید فلزات و غلظت‌های پایین نانوذرات فلزی در حال انجام است که در هر دو مورد در محدوده دمای 20 تا 50 درجه سانتیگراد افزایش دو تا چهار برابری در هدایت مشاهده شده است و در صورت تأیید این خواص برای دماهای بالاتر می‌توان نانوسیال را در سیستم‌های گرمایشی نیز استفاده کرد.

    بیشترین افزایش هدایت در سوسپانسیون نانولوله‌های کربنی گزارش شده است که علاوه بر هدایت حرارتی بالا، نسبت طول به قطر بالایی دارند[شکل 3].

    از آنجا که نانولوله‌های کربنی، تشکیل یک شبکه فیبری می‌دهند، سوسپانسیون آنها بیشتر شبیه کامپوزیت‌های پلیمری عمل می‌کند.

    بیرکاک[25] افزایش 125 درصدی هدایت را در اپوکسی پلیمر- نانولوله حاوی یک درصد نانولوله تک دیواره گزارش کرد، همچنین مشاهده کرد که با افزایش دما، هدایت حرارتی افزایش می‌یابد.

    چوی[3] برای سوسپانسیون یک درصد نانولوله‌های چند دیواره در روغن [شکل 3 ب] 16 درصد افزایش هدایت حرارتی گزارش کرده است.

    گزارش‌ها و تحقیقات مختلفی در زمینه افزایش هدایت حرارتی سوسپانسیون نانولوله‌کربنی ارائه شده است؛ زای [26] افزایش ده تا 20 درصدی هدایت حرارتی را در سوسپانسیون یک درصد حجمی با سیال آب گزارش کرده است.

    ون و دینگ [27] نیز 25درصد افزایش هدایت را در سوسپانسیون 8/0 درصد حجمی در آب گزارش کرده است.

    اسیل [23] بیشترین افزایش را 38 درصد برای سوسپانسیون شش درصد حجمی در آب گزارش کرده است.

    ون و دینگ افزایش سریع هدایت در غلظت‌های حدود 2/0 درصد حجمی را گزارش کرده و نشان داده است که این افزایش از آن به بعد تقریباً ثابت می‌ماند.

    در تمامی گزارش‌ها افزایش هدایت با دما مشاهده شده؛ هر چند برای دماهای بالاتر از 30 درجه سانتیگراد این افزایش تقریباً متوقف می‌شود.

    شکل 3.

    تصاویر SEM از نانو لوله های کربنی تک دیواره (a) و چند دیواره (b) مورد استفاده در سوسپانسیون ها و کامپوزیت ها.

    4.

    جریان، جابه‌جایی و جوشش اخیراً ضرایب انتقال حرارت نانوسیال در جابه‌جایی آزاد و اجباری اندازه‌گیری شده است.

    داس [17] آزمایش‌های تعیین خواص حرارتی جوشش را برای نانوسیال شروع کرد.

    یو [6] فلاکس حرارتی بحرانی نانوسیال آلومینا- آب در حال جوشش را اندازه‌گیری کرد و افزایش سه برابری در فلاکس حرارت بحرانی (CHF) را نسبت به آب خالص گزارش کرد.

    در همین زمینه واسالو [7] نانوسیال سیلیکا- آب را تهیه کرد و همان افزایش سه برابری در CHF را گزارش کرد.

    ضریب انتقال حرارت جابجایی آزاد علاوه بر اینکه به هدایت حرارتی بستگی دارد، به خواص دیگری مانند گرمای ویژه، دانسیته و ویسکوزیته دینامیک نیز وابسته است که البته در این درصدهای حجمی پایین همان‌طور که انتظار می‌رفت و مشاهده شد، گرمای ویژه و دانسیته بسیار به سیال پایه نزدیک است [33].

    ونگ [34] ویسکوزیته آلومینا- آب را اندازه گرفت و نشان داد که هر چه ذرات بهتر و بیشتر پراکنده شوند ویسکوزیته پایین‌تری را مشاهده می‌کنیم.

    وی افزایش 30 درصدی در ویسکوزیته را برای سوسپانسیون سه درصد حجمی گزارش کرد که در مقایسه با نتیجه پک‌رچو [35] سه برابر بیشتر به نظر می‌رسد که نشان‌دهنده وابستگی ویکسوزیته به روش تهیه نانوسیال است.

    ژوان‌ولی [32] ضریب اصطکاک را برای نانوسیال حاوی یک تا دو درصد ذرات مس به دست آورد و نشان دادکه این ضریب تقریباً مشابه سیال پایه آب است.

    ایستمن [36] نشان داد که ضریب انتقال حرارت جابه‌جایی اجباری سوسپانسیون 9/0 درصد حجمی از نانوذرات اکسید مس، 15 درصد بیشتر از سیال پایه است.

    شکل 4.

    پیش بینی هدایت حرارتی کامپوزیت ها ( نرمال شده بر اساس هدایت ماتریکس) به عنوان تابعی از جزء حجمی پر کننده.

    مربع توپر: ذرات با توزیع مناسب، دایره: خوشه های ذرات متراکم ( با 60 درصد حجمی) و مربع: خوشه های با تراکم کمتر ( با 40 درصد حجمی از نانو ذرات).

    ژوان ولی [32] ضریب انتقال حرارت جابه‌جایی اجباری در جریان آشفته را نیز اندازه گرفتند و نشان دادند که مقدار کمی از نانوذرات مس در آب دیونیزه شده، ضریب انتقال حرارت را به صورت قابل توجهی افزایش می‌دهد، به طور مثال افزودن دو درصد حجمی از نانوذرات مس به آب، حدود 39 درصد انتقال حرارت آن را افزایش می‌دهد.

    در حالی که در تناقض با نتایج بالا، پک‌وچو [35] کاهش 12درصدی ضریب انتقال حرارت را در سوسپانسیون حاوی سه درصد حجمی از آلومینا و تیتانا در همان شرایط مشاهده کردند.

    پوترا [28] با کار روی جابجائی آزاد، بر خلاف هدایت و جابه‌جایی اجباری، کاهش انتقال حرارت را مشاهده کرد.

    داس با [17] انجام آزمایش‌های جوشش روی آلومینا- آب نشان داد که با افزایش درصد حجمی نانوذرات، بازدهی جوشش نسبت به سیال پایه کم می‌شود.

    وی این کاهش را به تغییر خواص سطحی بویلر به علت ته‌نشینی نانوذرات روی سطح ناهموار آن نسبت داد، نه به تغییر خواص سیال.

    یو [6] با اندازه‌گیری فلاکس حرارتی بحرانی برای جوشش روی سطوح تخت و مربعی مس که در نانوسیال آب- آلومینا غوطه‌ور بودند، نشان داد که فلاکس حرارتی این سیالات سه برابر آب است و اندازه متوسط حباب، افزایش و فرکانس تولید آنها کاهش می‌یابد.

    این نتایج را واسالو [7] نیز تأیید کرد.

    وی روی نانوسیال آب - سیلیکا‌ کار می‌کرد و افزایش فلاکس حرارت بحرانی را برای غلظت‌های کمتر از یک‌هزارم درصد حجمی گزارش کرد.

    هنوز مدلی برای پیش‌بینی این افزایش‌ها و فاکتورهای مؤثر بر آن وجود ندارد.

    5.

    هدایت حرارتی نانوسیال هدایت حرارتی نانوسیال بیشترین مطالعات را به خود اختصاص داده است.

    این مقاله نیز به هدایت حرارتی در سیال ساکن پرداخته است.

    از آنجا که نانوسیال جزو مواد مرکب و کامپوزیتی محسوب می‌شود، هدایت حرارتی آن به وسیله تئوری متوسط مؤثر به دست می‌آید که به وسیله موسوتی، کلازیوس، ماکسول و لورانزا در قرن 19 به دست آمد [37 و38].

    اگر از تأثیرات سطح مشترک نانوذرات کروی صرف‌نظر شود، در مقادیر بسیار اندک نانوذرات [ f = جزء حجمی نانوذرات] همه مدل‌های منتج از تئوری متوسط مؤثر، حل یکسانی دارند.

    در مواردی که نانوذرات دارای هدایت حرارتی بالایی باشد پیش‌بینی می‌شود که افزایش هدایت حرارتی نانوسیال3× f خواهد شد که این پیش‌بینی، تخمین خوبی برای مواردی است که هدایت ذرات، بیشتر از 20 برابر هدایت حرارتی سیال باشد [39].

    همان‌طور که در شکل (2) نشان داده شده بسیاری از تحقیقات تطابق خوبی با این پیش‌بینی دارد، از جمله می‌توان به تحقیقات زیر اشاره کرد: نانوسیال کاربید سیلیکون با اندازه 26 نانومتر و نانوسیال آلومینا- آب و آلومینا- اتیلن گلیکول [10].

    مقاومت سطح مشترک نانوذرت و سیال اطراف آن پیش‌بینی این تئوری را کاهش می‌دهد؛ البته هر چه ذرات ریزتر باشند این مقاومت کاهش پیدا می‌کند.

    در غلظت‌های بالای نانوذر‌ات [شکل 1.

    وسط] اگر توده‌های نانوذره کوچک باشد، تئوری متوسط مؤثر خوب جواب می‌دهد؛ زیرا توده نانوذرات فضای بیشتری نسبت به نانوذر‌ات منفرد اشغال می‌کند و بنابراین جزء حجمی توده بیشتر از نانوذرات منفرد است.

    [40] در توده‌های متراکم نانوذرات، دانسیته نسبی تقریباً 0 6 درصد است و در مواردی که توده‌‌ها از نظر وضعیت ساختمانی بازتر باشد، افزایش بیشتری را مشاهده می‌کنیم [ شکل 4] که نتایج آزمایشی نیز همین را نشان می‌دهد [20]؛ البته هدایت حرارتی نانوذرات توده‌ای، کوچک‌تر از ذر‌ات منفرد است؛ البته عامل مهمی در مقابل هدایت حرارتی بالای نانوذرات نیست.

    6.

    چشم‌انداز در ده سال گذشته، خواص جالبی برای نانوسیالات گزارش شده است که در این میان، هدایت حرارتی بیشترین توجه را به خود جلب کرده است؛ ولی اخیراً خواص حرارتی دیگری نیز مورد پژوهش قرار گرفته است.

    نانوسیالات را می‌توان در زمینه‌های مختلفی به کاربرد، اما این کار با موانعی روبه‌رو است، از جمله اینکه درباره نانوسیال چند نکته باید بیشتر مورد توجه قرار گیرد: • تطابق نداشتن نتایج تجربی در آزمایشگاه‌های مختلف؛ • ضعف در تعیین مشخصات سوسپانسیون نانوذرات؛ • نبود مدل‌ها و تئوری‌های مناسب برای بررسی تغییر خواص نانوسیال.

    نکات برگزیده خواص استثنایی نانوسیالات شامل هدایت حرارتی بیشتر نسبت به سوسپانسیون‌های معمولی، رابطه غیرخطی بین هدایت و غلظت مواد جامد و بستگی شدید هدایت به دما و افزایش شدید فلاکس حرارتی در منطقه جوشش است.

    خواص استثنایی، به همراه پایداری، روش تهیه نسبتاً آسان و ویسکوزیته قابل قبول باعث شده تا نانوسیالات به عنوان یکی از مناسب‌ترین و قوی‌ترین انتخاب‌ها در زمینه سیالات خنک کننده مطرح شوند.

    مقدار کمی (حدود یک درصد حجمی) از نانوذرات مس یا نانولوله‌های کربنی در اتیلن گلیکول یا روغن به ترتیب افزایش 40 و 150 درصدی در هدایت حرارتی این سیالات ایجاد می‌کند.

    نقش رادیاتور در پروسه انتقال حرارت موتور بر اثر احتراق در موتورهای احتراق داخلی گرمای زیادی تولید می‌شود که حتی می‌تواند فلزات مجموعه سیلندر و پیستون را ذوب کند .

    سیستم خنک­کاری به­منظور پیشگیری از بالا رفتن دمای موتور به­کار می‌رود.

    این سیستم برای مراقبت در برابر عملکرد مؤثر در تمام سرعت‌های موتور و کنترل شرایط مختلف مورد استفاده است...

    بر اثر احتراق در موتورهای احتراق داخلی گرمای زیادی تولید می‌شود که حتی می‌تواند فلزات مجموعه سیلندر و پیستون را ذوب کند .

    این سیستم برای مراقبت در برابر عملکرد مؤثر در تمام سرعت‌های موتور و کنترل شرایط مختلف مورد استفاده است.

    دما در طول مدت احتراق مخلوط سوخت و هوا در محفظه احتراق موتور بسیار بالا می‌رود و به بیش از ۲۰۰۰ درجه می‌رسد.

    میزان قابل توجهی از این حرارت توسط دیواره‌های سیلندر و پیستون‌ها جذب می‌شود بنابراین باید خنک‌کاری به اندازه‌ای صورت پذیرد که دما بیش از حدود ۲۳۰ درجه نشود.

    دماهای بالاتر باعث کاهش ضخامت فیلم روغن می­شود و خواص روغن به­شدت افت می‌کند که این مسئله موجب افزایش استهلاک قطعات و ازدیاد دمای آنها خواهد شد.

    در موتورهای احتراق داخلی مقدار محدودی از انرژی سوخت برای قوای محرکه موتور استفاده می‌شود.

    تقریبا حدود ۲۸ درصد انرژی سوخت به کار مفید تبدیل می‌شود.

    ۳۰ درصد به­واسطه خنک­کاری، ۳۲ درصد به­وسیله خروج گازهای داغ و ۱۰ درصد باقیمانده توسط اصطکاک و عوامل دیگر به­هدر می‌رود.

    میزان حقیقی و دقیق انرژی تبدیل­شده به کار مفید در پروسه احتراق موتور به مشخصه‌های فیزیکی اجزای موتور بستگی دارد.

    همان‌طور که گفته شد، دما در طول احتراق در سیلندر موتورهای درون­سوز به بیش از ۲۰۰۰ درجه می‌رسد.

    این دما بیش از نقطه ذوب مواد مورد استفاده در ساختار موتور است بنابراین با بالارفتن دما به موتور خسارت وارد می‌شود و باید دمای کار موتور در محدوده­ای خاص حفظ شود.

    در یک نمونه سیستم خنک­کاری آبی موتور این دما در محدوده ۹۵-۷۵ قرار دارد که برای خنک­کاری هوایی این میزان کمی بیشتر است.

    خنک­کاری در موتور دو علت دارد: ۱) نگه داشتن دمای اجزای موتور در دمایی که روغنکاری مؤثر در آن ممکن باشد.

    ۲) نگه داشتن دمای اجزای مختلف موتور در یک محدوده خاص به­طوری که به سلامت قطعات موتور صدمه نزند.

    نحوه عملکـرد موتور در انتخاب و طراحی سیستم خنک­کاری تأثیر می‌گذارد و این کاملا به نوع گازهای احتراق و اجزای موتور وابسته است.

    وقتی موتور سرد است، کارایی پایینی دارد بنابراین سیستم خنک­کاری معمولا شامل وسایلی است که زمینه فعالیت خنک­کـاری نرمـال را بـرای حفظ گرمـای مناسب موتور مهیـا می‌کننـد.

    ­هنگام راه­اندازی موتور دمای قطعات داخلی آن، به­سرعت افزایش می‌یابد؛ پس وقتی موتور به دمای ­بهره­برداری می‌رسد باید سیستم خنک­کاری فعالیتش را آغاز کند.

    نمایه سیستم خنک­کاری موتور برای حداقل کردن حجم و وزن رادیاتور است که در وسایل نقلیه از اهداف مهم تلقی می‌شود.

    باید درجه حرارت متوسط آبی که از رادیاتور عبور می‌کند حتی­الامکان بالا نگه داشته شود تا اختلاف آن با درجه حرارت متوسط زیاد باشد.

    البته این درجه حرارت نباید از نقطه جوش آب در فشار اتمسفر تجاوز کند زیرا در آن صورت قسمتی از آب تبخیر می­شود و فشار داخل رادیاتور به­شدت افزایش می‌یابد.

    گرچه با طراحی درپوش مناسب برای رادیاتور آب داخل تحت فشار است تا دیرتر به نقطه جوش برسد، هوا نیز باید پس از عبور از رادیاتور به اطراف بدنه موتور جریان یابد.

    جهت عکس جریان به دو دلیل مناسب نیست: اولا هوا به روغن و ذرات آغشته به روغن که به هر حال روی بدنه موتور وجود دارد آلوده می‌شود و این ناخالصی‌ها روی منافذ رادیاتور رسوب می­کند و از راندمان آن می‌کاهد و ثانیا بر اثر تماس با بدنه گرم موتور درجه حرارت آن بالا می­رود و موجب کاهش قدرت­ خنک کنندگی رادیاتور می‌شود.

    برای درک نیاز موتور به سیستم خنک­کاری، اثرات افزایش یا کاهش دمای کارکرد موتور در ذیل آمده است: ● اثرات افزایش دمای کارکرد موتور ▪ بهره­برداری در دماهای بالا، بارهای زیاد با سرعت بالا بدون عملیات خنک­کاری باعث اکسیداسیون روغن روغنکاری می‌شود.

    در این شرایط ممکن است با بالا رفتن دما، لعاب و رسوب شکل گیرد؛ به­طوری که رینگ پیستون نتواند کار خود را انجام دهد؛ ضمن این که خراش خوردن رینگ نیز باعث اختلال عملکرد آن می‌شود.

    به همین ترتیب اکسیداسیون روغن می‌تواند باعث خوردگی و سایش بعضی از انواع یاتاقان‌ها شود.

    ▪ اگر دمای کارکـرد خیلـی زیاد شـود، نقاطی از پیستون‌ها و قسمت‌هایی از میل­لنگ که در یاتاقان می‌چرخند، منبسط می‌شوند که این موضوع باعث خروج آنها از لقی مجاز می­شود و این تغییرات صدمات جدی در یاتاقان‌ها و رینگ‌ها به­بار می­آورد.

    ▪ سطوح داخل محفظه احتراق از قبیل پای سوپاپ خروجی و شمع ممکن است آن­قدر گرم شود که جرقه زودتر اتفاق بیفتد؛ این شرایط جرقه پیش­رس نامیده می‌شود که اگر برای مدتی ادامه یابد، خسارت عمده به موتور می‌زند.

    ▪ اگر مخلوط تازه وارد شده به سیلندر خیلی گرم شود، چگالی آن کاهش خواهد یافت و در نتیجه قدرت آن کاسته می‌شود؛ به­خصوص در موتورهای بنزینی.

    ▪ با افزایش دمای مخلوط هوا و سوخت در محفظه احتراق و منیفولد ورودی، اصطکاک مکانیکی افزایش می­یابد و از قدرت خروجی موتور می‌کاهد.

    ● اثرات کاهش دمای کارکرد موتور ۱) افزایش خنک‌کاری باعث کاهش راندمان حرارتی، همچنین مانع تبخیر مناسب سوخت می‌شود که موجب رقیق شدن روغن می‌گردد.

    ۲) تبخیر نامناسب سوخت ، فیلم روغن بر روی دیواره‌های سیلندر را از بین می‌برد و باعث افزایش فرسایش سطح داخلی سیلندر می‌شود.

    ۳) به طور کلی خنک­کاری بیش از حد باعث کاهش قدرت، ضرر اقتصادی مصرف بیشتر سوخت و کاهش طول عمر قطعات موتور می­شود.

    ● ملاحظات طراحی رادیاتور طراحی رادیاتور باید براساس درجه حرارت هوا در گرمترین منطقه­ای که وسیله ممکن است در آن کار کند، صورت گیرد.

    در آب و هوای سردتر مقدار آب در گردش رادیاتور به وسیله ترموستات تنظیم می‌شود؛ به نحوی که فقط سنجش از قدرت خنک­کنندگی رادیاتور مورد استفاده قرار گیرد.

    افزایش دمایی بین ۸ تا ۱۲ درجه برای هوای جاری در رادیاتور منظور می‌شود.

    افزایش دمای بیشتر متداول نیست؛ به­خصوص که در هوای گرم موجب تبخیر بنزین در پمپ بنزین و لوله‌های رابط در موتور بنزینی می‌شود و از رسیدن سوخت به موتور جلوگیری به­عمل می‌آید.

    به منظور پیشگیری از سروصدای زیاد و مصرف بیش از اندازه توان موتور به وسیله پروانه، افت فشار سمت هوا کمتر از kpa ۱ منظور می‌شود.

    توان مصرفی پروانه باید به قدری باشد که در دور کم موتور و قدرت زیاد بتواند هوای کافی از رادیاتور عبور دهد.

    برای این که حجم رادیاتور کوچک باشد معمولا از لوله‌های تخت پره­دار استفاده می‌شود.

    هرچه تعداد پره بر واحد طول لوله بیشتر باشد، مبدل جمع و جورتر خواهد بود اما گرفتگی سوراخ پره‌ها با ذرات معلق موجود در هوا و حشرات سبب می‌شود که تعداد پره­ها بین ۴۰۰ و ۶۰۰ پره در هر متر باشد.

    ● رادیاتور و نحوه انتقال حرارت از سیال گرم به هوا رادیاتور دستگاهی است در سیستم خنک­کننده موتور که حجم زیادی از آب این سیستم را در تماس نزدیک با هوا نگه می­دارد تا انتقال حرارت از آب به هوا به­خوبی و به­سـرعت امکـان­پذیر باشـد.

    همچنین می‌توان گفت رادیاتور وسیله­ای است که برای نگهداری مقدار زیادی آب در مجاورت حجم بزرگی از هوا به­کار می‌رود؛ به طوری که حرارت بتواند از آب به رادیاتور و از رادیاتور به هوا منتقل شود.

    اجزای رادیاتور از مخزن بالایی و مخزن پایینی و هسته (شبکه) رادیاتور تشکیل شده که خود شبکه از لوله‌ها و پره‌ها به­وجود آمده است.

    همچنین به مخزن بالایی یک گلویی که به لوله هوا ارتباط دارد، متصل است.

    سیال خنک­کننده توسط پمپ به جداره‌های سیلندر جریان می‌یابد.

    در صورت بالا رفتن درجه حرارت سیال ترموستات مسیر را باز می‌کند و سیال گرم از طریق لوله ورودی رادیاتور که در مخزن ورودی آن تعبیه شده است، وارد رادیاتور می­شود و پس از خنک شدن به مخزن خروجی جریان می­یابد و پس از خروج توسط لوله خروجی رادیاتور، سیکل خود را ادامه می‌دهد.

    انتقال حرارت در رادیاتور خودرو به این صورت است که آب گرم در طول مسیر حرکت در رادیاتور، گرمای خود را به لوله‌ها منتقل می­کند و این گرما از محل اتصال لوله و پره، به پره‌ها منتقل می­شود و سپس گرمای انتقال­یافته به پره‌ها نیز توسط جریان هوای اجباری از آنها دفع می‌شود.

    کاهش نرخ انتقال حرارت جابجایی اجباری درون یک لوله با بکار گیری ماده متخلخل این مطالعه شامل دو بررسی می باشد، در بخش اول کاهش نرخ انتقال حرارت جابجایی اجباری درون یک لوله که به طور جزئی یا کامل از ماده متخلخل پر شده است، به صورت عددی مورد بررسی قرار گرفته است.

    به عبارتی دیگر در این حالت ماده متخلخل به عنوان عایق حرارتی عمل می کند.

    بدین منظور ماده متخلخل روی سطح داخلی لوله، قرار می گیرد.

    مدل یک معادله انرژی برای لحاظ کردن شرایط تعادل حرارتی در نظر گرفته شده است.

    اثر پارامترهای مختلف هیدرودینامیکی و هندسی مثل ضخامت ماده متخلخل، عدد دارسی و ضریب اینرسی، بر نرخ انتقال حرارت و افت فشار مورد بررسی قرار گرفته است.

    از مقایسه نتایج کار حاضر با حالتی که ماده متخلخل در لوله قرار ندارد، مشاهده شد که به ازای نسبت شعاع 0/6 کمینه نرخ انتقال حرارت (عدد نوسلت) بدست می آید.

    همچنین زمانی که لوله به طور کامل از ماده متخلخل پر باشد بیشینه نرخ انتقال حرارت (عدد نوسلت) بدست می آید.

    همچنین نتایج نشان میدهد که اثر ضریب اینرسی به ازای اعداد دارسی کمتر از 10 به توان 4- قابل صرفنظر کردن است.

    به عبارتی می توان برای دارسی کمتر از 10 به توان 4- جریان را به صورت جریان پلاگ در نظر گرفت.

    در بخش دوم، استفاده از ماده متخلخل درون یک لوله با شرایط غیر تعادلی حرارتی مورد بررسی قرار گرفته است.

    ماده متخلخل به صورت جزئی در مرکز لوله قرار می گیرد.

    هدف از این مطالعه بدست اوردن نسبت شعاعی از ماده متخلخل است، که تا آن نسبت شعاع، بتوان شرط تعادل حرارتی را در نظر گرفت.

    مدل دارسی – برینکمن – فورچهیمر برای مدل کردن جریان سیال، و مدل دو معادله انرژی برای لحاظ کردن شرایط غیر تعادل حرارتی در نظر گرفته شده است.

    لوله تحت شرایط دمای ثابت دیواره می باشد نتایج با حالتی که لوله بهطور کامل از ماده متخلخل پر شده باشد مقایسه شده اند.

    نتایج نشان می دهد که این مقدار از نسبت شعاع ماده متخلخل، باکاهش عدد دارسی ، افزایش می یابد، به طوری که به ازای اعداد دارسی 10 به توان 3- و 10 به توان 4- و 10 به توان 5- و 10 به توان 6- مقدار شعاع مورد نظر به ترتیب 0/6 و 0/8 و 0/9 و 0/95 می باشد.

    افزایش نرخ انتقال حرارت جوششی در جریان دو فازی انتقال حرارت جوششی در سیالات دو فازی هنگامی که ذرات جامد سوسپانسیونی در سیال قرار گرفته باشند یک بررسی روی اثرات ذرات جامد در افزایش انتقال حرارت جوششی صورت گرفته است.

    اندازه قطر ذره از میلی متر تا نانو متر می باشد.

    نتایج آزمایشگاهی نشان می دهد که با افزودن ذرات جامد به مایع در یک بستر ذره ثابت یا در یک بستر ذره سیالی شده ، انتقال حرارت جوششی افزایش می یابد.

  • فهرست:

    ندارد.


    منبع:

    ندارد.

انتقال گرما به وسیله نانو سیالات چکیده : اخیراً استفاده از نانوسیالات که در حقیقت سوسپانسیون پایداری از نانو فیبر ها و نانورزات جامد هستند به عنوان راهبردی جدید در عملیات انتقال حرارت مطرح شده است . تحقیقات اخیر روی نانو سیالات ، افزایش قابل توجهی را در هدایت حرارتی آنها نسبت به سیالات بدون نانوزات دیا همراه با ذرات بزرگتر (ماکرو ذرات) نشان می دهد . از دیگر تفاوت های این نوع ...

انتقال گرما در مواد به سه روش انجام می شود: 1- رسانایی 2- همرفت 3- تابش رسانایی : در انتقال گرما به این روش ابتدا قسمتی از ماده گرم می شود ملکولهای آن قسمت جنبش بیشتری پیدا می کنند سپس به ملکولهای مجاور برخورد کرده انها را نیز به حرکت در می اورنداین کار در سرتاسر ماده ادامه می یابد تا این که ماده گرم می شود. روش رسانایی در سه حالت ماده یکسان نیست . مواد جامد چون فاصله بین ...

دانشمندان با استفاده از يک نانونوک، با منبع گرمايي نانومقياس، توانسته‌اند يک سطح موضعي را بدون تماس با آن گرم کنند؛ اين کشف راهي به سوي ساخت ابزارهاي گرمايي ذخيره اطلاعات و نانودماسنج‌ها خواهد بود. همه ساله نياز بشر به ذخيره اطلاعات بيشتر و بيشتر م

پیشگفتار : سپاس بی کران خداوند بزرگ و بی همتا را که این بنده حقیر را در جهت نیل به اهداف خود یاری نمود . به دلیل اهمیت و کاربرد فراوان مایعات و مواد نفتی مورد استفاده در خودرو که وجود آنها باعث بهتر کار کردن موتور و کلاً مجموعه اتومبیل است ،‌ اینجانب این موضوع را برگزیده تا با تشریح آن بتوانم قدمی هر چند کوچک در جهت آگاه سازی دانشجویان گرامی برداشته باشم . در پایان از همکاری ...

خلاصه: طراحی یک سیستم گرمایش و ذوب برف در فرودگاه GolenioW در کشور لهستان هدف این مقا له می‌باشد. سیستم بر اساس کار کرد و استفاده از انرژی زمین گرمایی در منطقه Sziciecin نزدیک به شهر Goleniow طراحی شده است. در این منطقه آب زمین گرمایی در محدوده دمایی 40 تا 90 درجه سانتیگراد یافت می‌شود. مبنای طراحی سیستم استفاده از هیت پمپ هایی می‌باشد که گرما را از آب گرم 40 تا 60 درجه ...

آشنایی با سیستم تأسیسات سرمایشی و گرمایشی با توجه به اینکه این پروژه در باره کنترل تأسیسات مکانیکی و به صورت خاص کنترل تأسیسات HAC است پس لازم دانستیم که نخست توضیحی درباره این سیستم ها بدهیم و سپس به نحوه ‌ کنترل این سیستم‌ها در فصول آینده بپردازیم. هدف سیستم‌های سرمایشی و گرمایشی برآورده‌ کردن نیازهای گرمایشی و سرمایشی کاربران یک ساختمان است سیستم‌ها عبارتند از: سیستم حرارت ...

مقدمه انتقال حرارت به سيالات با خواص متغير موضوعي است که از بيش از نيم قرن پيش مورد توجه محققان قرار گرفته است. خواص ترموديناميکي و انتقالي در سيالات معمولا تابعي از دما و فشار سيال است. اين خواص در دماها و فشارهاي معمولي تقريبا ثابت است. يکي از

چکيده کندانسور يکي از قسمت هاي مهم نيروگاه است که نشتي آن باعث ورودآب خنک کن آلوده به قسمت آب سيکل مي شود، که در نهايت خسارت هاي فراواني به بويلر، توربين و ديگر اجزاء نيروگاه وارد مي شود نشتي هاي بوجودآمده معمولاً در اثر خوردگي هاي سمت بخا

روغن هاي فلزکاري 11-1 روانکاي در فرآيندهاي فلزکاري مهم ترين هدف فرآيندهاي فلزکاري، به وجود آوردن شکل هاي جديد با استفاده از قطعات فلزي است. به طور کلي اين فرآيندها شامل تماس دو قطعه ي فلزي يعني ابزار و قطعه کار مي باشد. اين تماس ها هم شامل جريان

ICP یکی از روش های مخرب تجزیه شیمیایی می باشد که بایستی نمونه را بصورت محلول در آورده و سپس آنرا تبخیر نمود. اصول عملیات: ICP یک منبع تحریک است برای طیف نمایی نشر اتمی. آن یک پلاسمای آرگون بکار رفته در فشار یک اتمسفر و نگهداشته شده بوسیله جفت کردن القایی بصورت یک میدان الکترومغناطیسی با فرکانس رادیویی می باشد. گاز آرگون بصورت محوری در درون یک تیوپ کوارتزی نگه داشته شده بوسیله سه ...

ثبت سفارش
تعداد
عنوان محصول