انواع لیزر لیزر حالت جامد در این نوع لیزر ، ماده فعال ایجاد کننده لیزر ، یک یون فلزی است که با غلظت کم در شبکه یک بلور یا درون شیشه ، به صورت ناخالصی قرار داده شده است.
فلزاتی که برای این منظور بکار میروند عبارتند از: اولین سری فلزات واسطه لانتانیدها آکتنیدها ازمهمترین لیزرهای حالت جامد میتوان از لیزر یاقوت که یک لیزر سه ترازی است و لیزرهای نئودنیوم (Nd:glass , Nd:YAG) میتوان نام برد.
لیزر گازی ماده فعال در این سیستمها یک گاز است که به صورت خالص یا همراه با گازهای دیگر مورد استفاده قرار میگیرند.
بعضی از این مواد عبارتنداز: نئون به همراه هلیوم (لیزر هلیم_نئون) ، دی اکسید کربن به همراه نیتروژن و هلیوم ، آرگون ، کریپتون ، هگزا فلورئید و ...
.
لیزر مایع از مایعات بکار رفته در این نوع لیزرها اغلب به منظور تغییر طول موج یک لیزر دیگر استفاده میشود.
(اثر رامان).
بعضی از این مواد عبارتند از: تولوئن ، بنزن و نیتروبنزن.
گاهی محیط فعال برخی از این لیزرها را محلولهای برخی ترکیبات آلی رنگین از قبیل مایعاتی نظیر اتانول ، متانول یا آب تشکیل میدهد.
این رنگها اغلب جز رنگهای پلیمتین یا رنگهای اگزانتین و یا رنگهای کومارین هستند.
لیزر نیم رسانا این نوع لیزرها به لیزر دیود و یا لیزر تزریقی نیز معروفند.
نیم رساناها از دو ماده که یکی کمبود الکترون داشته ، (نیم رسانای نوع p) و دیگری الکترون اضافی دارد، (نیم رسانای نوع n) تشکیل شدهاند.
وقتی این دو به یکدیگر متصل میشوند، در محل اتصال ناحیهای به نام منطقه اتصال p_n بوجود میآید.
آن منطقه جایی است که عمل لیزر در آن رخ میدهد.
الکترونهای آزاد از ناحیه n و از طریق این منطقه به ناحیه p مهاجرت میکنند.
الکترون هنگام ورود به منطقه اتصال ، انرژی کسب میکند و هنگامی که میخواهد به ناحیه p وارد شود، این انرژی را به صورت فوتون از دست میدهد.
اگر ناحیه p به قطب مثبت و ناحیه n به قطب منفی یک منبع الکتریکی وصل شود، الکترونها از ناحیه n به ناحیه p حرکت کرده و باعث میشوند تا در منطقه اتصال ، غلظت زیادی از مواد فعال بوجود آید.
با از دست دادن فوتون ، تابش الکترومغناطیسی حاصل میگردد.
چنانچه دو انتهای منطقه اتصال را صیقل دهند، آنگاه یک کاواک لیزری بوجود خواهد آمد.
اصولا این نوع لیزرها را طوری میسازند که با استفاده از ضریب شکست دو جز p و n ، کار تشدید پرتو لیزر انجام شود.
یکی از نقاط ضعف لیزرهای نیم رسانا همین است، زیرا با تغییر دما ، میزان ضریب شکست و به دنبال آن خواص پرتو حاصله ، تفاوت خواهد کرد.
به همین دلیل لیزرهای دیودی نسبت به تغییرات دما بسیار حساس هستند.
در یک نوع از این لیزرها از بلور گالیم_آرسنید استفاده میشود که در آن تلوریم و روی به عنوان ناخالصی وارد میشوند.
هنگامی که در بلور فوق بجای برخی از اتمهای آرسنیک ، اتم تلوریم قرار داده شود، جسم حاصل نیم رسانایی از نوع n برده و وقتی که اتمهای روی مستقر میگردند، ماده بدست آمده از خود خاصیت نیم رسانای p را نشان خواهد داد.
لیزر شیمیایی در این نوع لیزرها ، تغییرات انرژی حاصل از یک واکنش شیمیایی باعث برانگیزش بعضی از فرآوردهها و در نتیجه وارونگی جمعیت میشود که به دنبال آن عمل لیزر اتفاق میافتد.
تجزیه هالید نیتروزیل () و توسط نور را میتوان به عنوان مثال ذکر نمود.
در تجزیه هالید نیتروزیل و در تجزیه ، برانگیخته میشود.
میتواند کلر یا برم باشد.
لیزر کیلیتی به دلیل وجود تابشهای فلورسانس پرشدت حاصل از بعضی ترکیبات کیلیتی لانتانیدها ، استفاده از این سیستمها چندان مورد توجه نبوده است.
این ترکیبات ایجاد پرتو لیزر را ممکن ساخته است.
یکی از مکانیسمهای پیشنهادی برای این فرآیند آن است که ابتدا لیگاند برانگیخته شده و سپس یک جهش بدون تابش درون مولکولی به تراز برانگیخته فلز صورت گیرد و به دنبال آن یون فلزی با گسیل تابش فلورسانس به تراز پایه برمیگردد.
این تابش سرچشمه پرتو نور لیزر است.
β - دیکتونها از جمله لیگاندهایی هستند که با لانتانیدها تولید ترکیبات کیلیتی مینمایند.
در چنین سیستمهایی میتوان با استفاده از یونهای فلزی گوناگون ، لیزرهای کنترل شده) بدست آورد.
لکن نیاز به درجه حرارت پایین جهت تامین کارآیی خوب ، از توجه و مطالعه در مورد این سیستمها کاسته است.
لیزر هلیوم – نئون نگاه اجمالی معروفترین لیزر (در حقیقت یکی از معروفترین لیزرها) لیزر He - Ne است.
ماده فعال آن مخلوطی از هلیوم و نئون است که با نسبت حدود 10 قسمت هلیوم و 1 قسمت نئون بدست میآید.
این مخلوط در یک لوله نازک از جنس B (بور) با قطر حدود چند میلیمتر صدای حدود 0.1 تا 1 متر در فشار حدود 10 میلیمتر جیوه قرار میگیرد.
تخلیه الکتریکی در آن بوقوع میپیوندد و فقط نکته قابل توجه اینکه به دلیل کم شدن مقاومت لوله وقتی تخلیه الکتریکی شروع میشود.
مقاومت باید بطور سری با منبع تغذیه قرار میگیرد تا جریان را محدود سازد.
تئوری لیزرهای هلیوم - نئون گذارهای لیزری بین ترازهای انرژی نئون با چندین گذار مختلف ممکن است.
این گذارها بین گروه ترازها که با 3S به 2S نشان داده شدهاند، اتفاق میافتد.
متأسفانه تحریک کردن مستقیم اتمهای Ne به این ترازها بسیار مشکل ناکارآمد است و لذا از یک روش کمکی باید استفاده نمود و خوشبختانه ترازهای هلیوم (21S و 23S) که کاملا نزدیک به ترازهای 2S و 3S نئون هستند و به علاوه به آسانی در تخلیه الکتریکی دمش میشود.
وقتی هلیومهای تحریک شده به اتمهای نئون در حالت پایه برخورد میکنند، ممکن است انرژی خود را به آنها بدهند و آنها را به تراز تحریکی مورد نظر Ne بفرستند.
ترازهای هلیوم و نئون دقیقا بر روی هم منطبق نیستند، ولی اختلاف آنها کم است و این اختلاف با انرژیهای جنبشی اتمها در تبادل انرژی تقریبا جبران میشود.
فرآیند تحریک اتمهای نئون را میتوان با معادلات زیر نشان داد: e1 + He → He* + e2 He* + Ne → Ne* + He که e1 و e2 انرژیهای الکترون قبل و بعد از برخورد میباشد.
و علامت ستاره نشان از تحریک اتم و حضور در حالت تحریکی دارد.
مکانیزم لیزرهای چهار ترازی هر یک از گذارهای چهار گانه لیزر (3.39 میکرون ، 1.150 میکرون ، 832.8 نانومتر ، 543.5 نانومتر) با دیگری از شروع و یا پایان گذار شریک است.
و از اینرو است که این گذارها همواره باهم رقابت میکنند و دقت خاص باید اعمال شود تا از گذارهای ناخواسته جلوگیری شود.
بهترین راه این است که آینههای لیزر برای طول موج مورد نظر بازتاب کننده بسیار خوبی باشند.
لیزر هلیم- نئون مثال دیگری از لیزرهای 4 ترازی است.
و بنابراین لازم است جمعیت تراز پایینی لیزر در حداقل ممکن نگه داشته شود، بدین معنی که الکترونها در تراز پایین لیزر باید به سرعت به حالت پایه برگردند.
در نئون یک فرآیند پلهای وجود دارد، فرآیند اول از 2P به 1S که گذار انتقال سریع است و دومی 1S به حالت پایه که خیلی سریع نیست، گذار دوی با برخورد به جداره لوله تقویت میشود.
در واقع نشان داده شده است که بهره لیزر با قطر لوله نسبت عکس دارد و بنابراین قطر لوله تخلیه باید در حداقل ممکن نگه داشته شود.
مکانیزم ترازهای لیزر هلیوم - نئون گذار 2P به 1S مورد توجه است، به دلیل اینکه رنگ لامپهای نئون را دارد.
بنابراین تراز 2P توسط تخلیه الکتریکی معمولا دمش میشود و این باعث افزایش جمعیت تراز 2P و متعاقبا کاهش جمعیت معکوس میشود (لااقل برای طول موجهای 5 میکرون و 632.8 نانومتر و 543.5 نانومتر).
در حقیقت نیز باعث کاهش توان لیزر در لولههای با جریانهای زیاد میگردد.
بنابراین ما نمیتوانیم با افزایش جریان ، توان خروجی لیزر را افزایش دهیم و از اینرو لیزر He - Ne همچنان یک لیزر نسبتا کم توان باقی میماند.
گر چه لیزرهای هلیوم - نئون توان کمی ، اساسا بین 0.5 تا 10 میلی وات دارند.
دارای ویژگیهای دیگری از قبیل پهنای باریک خط و کیفیت بسیار خوبی هستند.
ساختار لیزر هلیوم - نئون گر چه گاهی لیزرهای هلیوم - نئون با آینههای خارجی ، برای وقتی که لازم است قطعات اپتیکی ما در داخل کاواک قرار دهیم ساخته میشود.
ولی بهتر است آینههای بر روی لوله نصب شوند، طرح این لیزر در شکل زیر نشان داده شده است.
در این مورد لوله شیشهای استوانهای آینهها را که به محفظه متصل شدهاند محکم نگه میدارد.
ماده فعال در لوله موئینه شیشهای سخت که از آند به سمت کاتد کشیده شده است، قرار دارد.
لوله کاتد از جنس آلیاژی از آلومینیم است که گسیلهای الکترونی از داخل آن بوجود میآید.
چندین فرآیند از جمله گسیل فوتوالکتریک و الکترونهای تونلی از لایه اکسید روی سطح کاتد گسیل این الکترونها را توضیح میدهد.
خیلی مهم است که آینههای با کیفیت عالی و مقاوم در برابر تخلیه الکتریکی بکار گرفته میشود.
اینگونه آینهها معمولا از چندین لایه با ضخامتهای ربع طول موج و از جنس دی اکسید تیتانیوم و دی اکسید سیلیکان ساخته میشود.
اگر نوری پلاریزه مورد نیاز است باید پنجرههای بروستر بکار گرفته شود.
لیزر یاقوت نگاه اجمالی اولین لیزری که بکار انداخته شد، لیزر یاقوت بود و هنوز نیز مورد استفاده است.
یاقوت که متجاوز از صدها سال به عنوان سنگ طبیعی پر بها شناخته شده است، بلور (سنگ سنباده) است که بعضی از یونهای آن با یونهای عوض شدهاند.
به عنوان ماده لیزری ، این بلور را معمولا از رشد مخلوط مذاب (تقریبا 0.05% وزنی) و تهیه میکنند.
لیزر یاقوت یک دستگاه سه ترازی است.
مکانیزم لیزر یاقوت ماده فعال این لیزر با حدود 0.05% وزنی کروم به عنوان ناخالصی در آن بدست میآید.
یونهای فعال هستند که با یونهای آلومینیوم در شبکه جایگزین میشوند.
ترازهای مهمی در انجام ، عمل لیزر را نشان میدهد.
گذار لیزری (در 694 میلیمتر) بین ترازهای اخیر 2E و 4A2 و ترازهای حالت پایه واقع میشود و لذا یاقوت یک دستگاه لیزری سه ترازی است.
به همین دلیل لازم است بیش از نصف تعداد یونها به حالت 2E دمش شوند، تا جمعیت معکوس شود.
عمل دمش از طریق دو باند پهن 4T1 و 4T2 انجام میگیرد.
(مانند لیزر Nd:YAG ) با استفاده از لامپ فلاش میتوانیم لیزر ضربانی بدست آوریم.
ایجاد لیزر با پرتو مداوم به دلیل نیاز به پمپاژ بیشتر بسیار مشکل است.
برای این منظور لامپ جیوه با فشار بالا که خروجی آن با باندهای جذبی یاقوت مطابقت دارد، کاملا مناسب است.
نور لیزر وقتی که نور در دستگاه لیزر توسط کوانتومها تولید شد، با رفت و برگشت بین آینهها متمرکزتر میشود.
ساختار لیزر یاقوت یاقوت از نظر ساختار شیمیایی از تشکیل شده است که در آن درصد کمی از با جایگزین میشود.
برای این کار مقداری پودر به خیلی خالص ذوب شده ، اضافه میکنند.
بلور یاقوت و اکثر بلورهای لیزری ، به روش رشد بلور چکرالسکی قابل تولید هستند.
ساختار بلوری یاقوت تک بلورهای میزبان ، تک محور و دارای ساختاری شش گوش میباشند.
بلور دارای یک محور تقارن است.
در فرایند آلایش به جای یکی از یونهای آلومینیم یون ناخالصی (مانند ) مینشیند.
به روش چکرالسکی میلههای لیزری به طول 15 سانتیمتر و قطر 3.5 سانتیمتر قابل رشد میباشد.
در فرایند رشد ، بلور بر روی نطفه اولیه با خلوص بالا رشد داده شده و به آهستگی از داخل ماده مذاب مایع بیرون کشیده میشود.
مقدار آلایش ، 0.05 درصد وزنی است.
لیزرهای شبیه یاقوت بلور با یون نیز آلائیده میشود و فرایند رشد آن شبیه یاقوت است.
لیزر یکی از سیستمهای لیزری حالت جامدی است که ناحیه قابل تنظیم طول موجی آن خیلی وسیع و در حدود 300 نانومتر میباشد.
جایگزین لیزرهای یاقوت لیزرهای یاقوت که زمانی بسیار مورد توجه بودهاند، امروزه کمتر مورد استفاده قرار میگیرند.
چه رقبایشان لیزرهای Nd:YAG یا نئودیمیم _ شیشه (Nd:glass) جانشین آنها شدهاند.
در واقع از آنجا که لیزر یاقوت با طرح سه ترازی کار میکند، انرژی آستانه دمش مورد نیاز در حدود یک مرتبه بزرگی از انرژی آستانه دمش برای لیزر Nd:YAG به همان ابعاد بزرگتر است.
ولی لیزرهای یاقوت هنوز هم برای برخی از کاربردهای علمی نظیر تمام نگاری تپی و آزمایشهای فاصله یابی (مثال فاصله یابهای نظامی) استفاده میشوند.