مقدمه
در حالت کلی سینتیک شیمیایی را میتوان علم مطالعه سیستمهای ناظر بر تجزیه شیمیایی و یا تغییر حالت مولکولها دانست. به عبارت دیگر سینتیک را میتوان علم مکمل ترمودینامیک دانسته و سیستمهایی را که توزیع انرژی آنها با زمان تغییر مینماید مطالعه کرد. نظریههایی که اثرات متقابل شیمیایی را توجیه میکنند بطور گستردهای بر اساس نتایج تجربی پایه گذاری شدهاند که با روشهای ترمودینامیکی و سینتیکی به دست میآیند.
نگاه اجمالی
با یک نگرش سطحی میتوان مشاهده نمود که برخی از واکنشهای شیمیایی آنی بوده و تعدادی کند یا بینهایت کند هستند. همچنین شدت بعضی از واکنشها در آغاز زیاد است، رفته رفته آهسته میگردند، برعکس برخی از واکنشها به کندی شروع شده و سپس شتاب میگیرند، سینتیک عامل زمان را در واکنشهای شیمیایی مطرح و مورد بحث قرار میدهد.
تاریخچه
از نظر تاریخی مطالعه سرعت واکنشها یکی از قدیمیترین موضوعات شیمی فیزیک بوده است. و نزل در سال 1777 سرعت انحلال فلزات در اسیدها را مطالعه کرد. ویلهمی در سال 1850 هیدرولیز بوسیله اسیدها را مورد بررسی قرار داد و به این نتیجه رسید که سرعت واکنش هیدرولیز ساکاروز متناسب با غلظت ساکاروز تجزیه نشده است.
ویلهمی را میتوان پایه گذار سینتیک نامید. درسال 1862 برتلو و سن ژیل نیز نتایج مشابهی روی هیدرولیز استرها در محیط اسیدی داشتند، سرانجام درسال 1863 گولدبرگ و واگ نتایج فوق را تعمیم داده و به صورت قانون اثر غلظتها بیان کردند.
مطالعات اولیه سینتیک
اولین مطالعات در سینتیک شیمیایی مربوط به اندازه گیری سرعت واکنشها بوده و برای رسیدن به هدف اصلی با توجیه این سرعتها به شناخت مکانیسم کامل واکنش مورد مطالعه پی میبریم. البته از آنجا که سرعت اندازه گیری شده یک حالت آماری متوسط مولکولهای شرکت کننده در واکنش میباشد، سینتیک شیمیایی اطلاعی از حالت انرژیتیکی یا وضع فضایی مولکولها را بطور جداگانه ارائه نمیدهد ولی با این وصف مطالعه جنبشی واکنش های شیمیایی در تفکیک مکانیسم های پیچیده به مراحل ساده ، دارای توانایی و قدرت قابل توجهی میباشد.
مکانیسم کلی واکنشهای پیچیدهای که واکنشگرها تغییرات مرحلهای انجام میدهند، تنها با مطالعه سینتیکی سرعت یعنی فرایند حاکم بر واکنش از طریق مطالعه سینتیکی قابل تشریح میباشد.
استفاده همزمان از عوامل ترمودینامیکی و سینتیکی
ترمودینامیک شیمیایی هم مانند سینتیک شیمیایی شاخه مهمی از شیمی فیزیک است. در ترمودینامیک عامل زمان ، در کار نیست و در آن از تعادل و حالت ابتدایی و انتهایی سیستم بحث میشود. بی آنکه از سرعت رسیدن به تعادل سخن گفته شود. در بیشتر موارد عملی اکثر اطلاعات مورد نیاز با استفاده همزمان از عوامل ترمودینامیکی و سینتیکی بدست میآید. برای مثال در فرایندهای برای تهیه آمونیاک داریم:
زمانی که واکنش گرمازا باشد طبق اصل لوشاتلیه تهیه آمونیاک در فشار بالا و دمای پایین امکانپذیر است. ولی عملا در دمای سرعت واکنش به اندازهای کند است که به عنوان یک فرایند صنعتی مقرون به صرفه نمیباشد. لذا اگر چه در فرایند هابر با استفاده از فشارهای زیاد تعادل در جهت تولید آمونیاک پیشرفت میکند، عملا در حضور کاتالیزور و دمای (عوامل ترمودینامیکی) سرعت رسیدن به تعادل به مراتب افزایش مییابد. در نتیجه برای مشخص نمودن شرایط انجام این واکنش از عوامل ترمودینامیکی و سینتیکی استفاده میشود.
تفاوتهای سینتیک و ترمودینامیک
علم ترمودینامیک بیشتر مبتنی بر تغییر انرژی و آنتروپی است که معمولا همراه با تغییر در سیستم میباشد و با استفاده از انرژی آزاد یک واکنش و همچنین ثابت تعادل آن امکان انجام یا عدم انجام یک واکنش شیمیایی را پیشبینی میکند. اما نتایج ترمودینامیکی به هیچ وجه نمیتواند سرعت تغییرات شیمیایی و یا مکانیسم تبدیل واکنش دهندهها اطلاعاتی به ما بدهد. به عنوان مثال اکسیژن و نیتروژن موجود در جو زمین میتوانند با آب اقیانوسها وارد واکنش شده و اسید نیتریک رقیق تولید کنند.
بر اساس اطلاعات ترمودینامیکی ، این واکنش به صورت خودبهخودی میتواند انجام شود. اما طبق اطلاعات سینتیکی خوشبختانه سرعت آن خیلی کم میباشد. تفاوت مهم دیگر بین سینتیک و ترمودینامیک این است که طبق اصول اساسی ترمودینامیک مقدار ثابت تعادل برای واکنشها مستقل از مسیری است که واکنش دهندهها را به فراورده تبدیل میکند اما در سینتیک مسیر واکنش بسیار اهمیت دارد، زیرا کلیه مراحل و مکانیسم واکنشهای شیمیایی را تشکیل میدهد.
تعریف سینتیک شیمیایی
سینتیک شیمیایی عبارت از بررسی سرعت واکنشهای شیمیایی است. سرعت یک واکنش شیمیایی را عوامل معدودی کنترل میکنند. بررسی این عوامل ، راههایی را نشان میدهد که در طی آنها ، مواد واکنشدهنده به محصول واکنش تبدیل میشوند. توضیح تفضیلی مسیر انجام واکنش بر مبنای رفتار اتمها ، مولکولها و یونها را "مکانیسم واکنش" مینامیم.
در ترمودینامیک و الکتروشیمی ، کارها پیشبینی انجام واکنش بود؛ اما مشاهدات صنعتی ، نتایج ترمودینامیک شیمیایی را به نظر تایید نمیکند. در این حالت نبایستی فکر کنیم که پیش بینی ترمودینامیک اشتباه بوده است؛ چون ترمودینامیک کاری با میزان پیشرفت واکنش و نحوه انجام فرایندها ندارد. نظر به اهمیت انجام فرایندها از نظر بهره زمانی ، لازم است که عامل زمان در بررسی فرایندها وارد شود.
به عنوان مثال ، کاتالیزورهای بخصوصی به نام "آنزیمها" در تعیین این که کدام واکنش در سیستمهای زیستی با سرعت قابل ملاحظه به راه بیافتد، عواملی مهم هستند. مثلا مولکول "تری فسفات آدنوزین" (Adnosine triphosphate) از لحاظ ترمودینامیکی در محلولهای آبی ناپایدار بوده و باید هیدرولیز گردیده و به "دی فسفات آدنوزین" و یک فسفات معدنی تجزیه شود. در صورتی که این واکنش در غیاب آنزیمی ویژه ، "آدنوزین تری فسفاتاز" ، بسیار کند میباشد.
در واقع همین کنترل ترمودینامیکی سمت و سوی واکنشها به همراه کنترل سرعت آنها توسط آنزیمهاست که موجودیت سیستمی با تعادل بسیار ظریف ، یعنی سلول زنده را مقدور میسازد. بیشتر واکنشهای شیمیایی طی مکانیسمهای چند مرحلهای صورت میگیرند. هرگز نمیتوان اطمینان داشت که یک مکانیسم پیشنهاد شده ، بیانگر واقعیت باشد. مکانیسم واکنشها تنها حدس و گمانهایی بر اساس بررسیهای سینتیکیاند.
سرعت متوسط واکنش در یک بازه زمانی بیان کننده میانگین میزان پیشرفت واکنش در آن بازه زمانی است. برای تعیین سرعت متوسط یک واکنش سرعت متوسط تولید یا مصرف یکی از مواد مربوط به آن واکنش مشخص می شود. اگر واکنش را به صورت در نظر بگیریم سرعت متوسط سرعت مصرف واکنش دهنده A و سرعت متوسط تولید فرآورده B نشان داده می شود که :
سرعت متوسط معمولا بر حسب واحد mol/s (مول بر ثانیه) mol/min (مول بر دقیقه) گزارش می شود.
چون با گذشت زمان کوچکتر از صفر (منفی) است و سرعت واکنش کمیتی مثبت می باشد به همین دلیل در رابطه یک منفی وجود دارد که همواره کمیتی مثبت شود.
اگر ماده مورد نظر به فرم گازی یا محلول باشد , به جای تغییر تعداد مول ها می توان تغییر غلظت مولی را در نظر گرفت پس می توان نوشت :
سرعت متوسط واکنش نسبت به تغییر غلظت مولی هر ماده به صورت mol/l.s و یا به صورت mol/L.min گزارش می شود.
سرعت متوسط واکنش از تقسیم سرعت متوسط تولید فرآورده یا مصرف واکنش دهنده بر ضریب استوکیومتری واکنش موازنه شده به دست می آید مثلا :
نکته : هر گاه واکنش دهنده ها و یا محصولات یک واکنش به حالت گاز باشند می توان سرعت واکنش را بر حسب تغییر حجم نسبت به زمان بیان کرد . در این صورت سرعت بر حسب ……, ml/min , L/s , L/min گزارش می شود.
دو نظریه مهم واساسی که واکنشهای شیمیایی را در سطح مولکولی )میکروسکوپی) بررسی میکند عبارتند از:
1) نظریه برخورد
2) نظریه حالت گذار
نظریه برخورد
مطابق با این نظریه، برای انجام یک واکنش باید بین ذره های واکنش دهنده برخورد موثر صورت گیرد.
برخورد موثر برخوردی است که دارای دو ویژگی مهم زیر باشد:
1) جهت مناسب برخورد
2) دارا بودن انرژی کافی ذره ها هنگام برخورد
تعداد برخوردها
افزایش غلظت باعث افزایش تعداد برخورد ها و در نتیجه افزایش سرعت واکنش میشود. طبق نظریه برخورد سرعت واکنش به تعداد برخوردهای بین ذره های واکنش دهنده در واحد حجم و زمان بستگی دارد.
انرژی ذره ها هنگام برخورد
در میان برخوردهای متعدد میان ذره ها فقط تعداد محدودی منجر به انجام واکنش می شوند. زیرا همگی آنها دارای انرژی کافی نیستند.در واقع انرژی ذره ها هنگام برخورد باید به حدی باشد که بتواند پیوندهای موجود میان مواد واکنش دهنده را سست کند. این انرژی را "انرژی فعالسازی" گویند.
جهت گیری مناسب مولکولهای برخورد کننده
برای اینکه برخورد بین ذره های واکنش دهنده به انجام واکنش و تولید فرآورده بیانجامد باید این ذره ها درجهت مناسبی به یکدیگر نزدیک شده و برخورد کنند. شکل زیر برخوردهای با جهت گیری مناسب و نامناسب را در واکنش مقابل نشان میدهد.
چگونگی انجام یک واکنش
برای انجام دادن یک واکنش شیمیائی باید بین مواد واکنش دهنده برخوردهای موثر و کارا صورت گیرد. درواقع ذره های واکنش دهنده دارای حرکات نامنظم دائمی هستند که این حرکات باعث برخوردهائی میشود. اگر این برخورد ها جهت و راستای مناسب داشته و همچنین انرژی و شدت لازم را داشته باشد واکنش انجام می گیرد.
انرژی فعالسازی
همانطور که گفته شد برای اینکه یرخورد بین ذره ها مؤثر باشد باید علاوه بر داشتن جهت و راستای مناسب انرژی کافی نیز داشته باشد. در واقع این انرژی جهت سست کردن پیوندهای موجود در مواد واکنش دهنده برای تبدیل شدن به فرآورده ها بکار می رود. از این انرژی بعنوان ((انرژی فعالسازی Ea ))نام برده می شود. در واقع انرژی فعالسازی مانند یک سد است که مانع انجام واکنش شده و باعث کندی انجام آن میشود.