در اواسط دهه 1980، با نزول قیمت DRAM، این ایده مطرح شد که کامپیوترهای آتی با داشتن حافظه اصلی با ظرفیت بالا، می توانند بسیاری از پایگاه داده ها را درحافظه اصلی داشته باشند. در این شرایط می توان همه I/O ها (که بسیار هزینه بر می باشند) را از پردازش DBMS حذف نمود. بنابراین معماری DBMS دستخوش تغییرات جدی می شود و در یک MAIN MEMORY DBMS(MMDBMS)، مدیریت I/O دیگر نقشی نخواهد داشت.
نکته مهم در یک MMDB، چگونگی انجام تراکنشها و recovery بصورت کارا است. برخی از الگوریتمهای پیشنهادی براساس این فرض عمل می کنند که قسمت کوچکی از حافظه اصلی بصورت ماندگار وجود دارد که اطلاعاتش توسط باطری در صورت قطع برق از بین نخواهد رفت. این قسمت از حافظه اصلی برای نگهداری redo log ها استفاده می شود.
تعداد دیگری از الگوریتمهای پیشنهادی پیش فرض حافظه ماندگار را ندارند و همچنان از عملیات I/O برای نوشتن اطلاعات تراکنش در حافظه ماندگار استفاده می کنند. بنابراین در این الگوریتمها عملیات I/O بطور کامل حذف نمی شود، بلکه تعدادشان بسیار کمتر می شود زیرا I/Oمربوط به نوشتن اطلاعات صفحات buffer ها، حذف خواهد شد.
در یک MMDBMS، ساختارداده های ساده مانند T-Tree و همچنین bucket-chained hash جایگزین ساختارداده هایی چون B-Tree و linear hash در DBMS های مبتنی بر دیسک می شوند. بنابراین سرعت اجرای پرس و جو(پرس و جو) و بهنگام سازی بسیار افزایش می یابد و هزینه index lookup و نگهداری ،فقط مربوط به پردازنده و دسترسی به حافظه اصلی خواهد شد.
یکی از مشکلات اصلی در MMDBMS ها بهینه کردن درخواستهاست. عدم وجود I/O به عنوان فاکتور اصلی در هزینه ها به معنای پیچیدگی بیشتر مدل کردن هزینه در یک MMDBMS است زیرا در اینجا یکسری فاکتورهای فازی از قبیل هزینه اجرای پردازنده ، باید در نظر گرفته شوند. در این حالت باید با استفاده از تعامل روش coding، عوامل سخت افزاری مانند پردازنده و معماری حافظه و پارامترهای پرس و جو، به یک مدل قابل اطمینان از هزینه اجرا در حافظه اصلی رسید.
در دهه 1990، MMDBMS ها با افزایش سایز دیسکها و سایز مسائل همراه با افزایش ظرفیت DRAM ها، به اوج محبوبیت خود رسیدند. MMDBMS ها اغلب برای برنامه هایی که به پایگاه داده Real Time نیاز دارند (مانند سیستمهای embedded سوئیجهای تلفن) ، استفاده می شود. از آنجایط که سایز حافظه اصلی در کامپیوترها روز به روز در حال افزایش است، این امید وجود دارد که برای بسیاری از پایگاه داده هایی که امروزه امکان قرارگفتن آنها بصورت کامل در حافظه اصلی وجود ندارد، این شرایط مهیا شود.
مدلهای هزینه حافظه اصلی
متاسفانه تا کنون تلاشهای اندکی جهت مدل کردن هزینه کارایی MMDBMSها صورت گرفته است. تحقیقات اولیه روی طراحی ماشینهای پایگاه داده ها، بیشتر در زمینه وابستگیهای میان الگوریتمها و دسترسی حافظه صورت می گرفت.در صورتیکه امروزه به دلیل محدود شدن استفاده از MMDBMS ها به کاربرد در پایگاه داده های Real Time(به صورت پرس وجوهای ساده، مانند یک hash lookup در یک جدول)، اینگونه تحقیقات از اهمیت کمتری برخوردارند.
در تحقیقات اخیر در زمینه MMDBMS ها دو نمونه تحقیقاتی Office-By-Example (OBE) مربوط به شرکت IBM و Smallbase مربوط به شرکت HP مسائل ارزشمندی را درمورد بهینه سازی پرس وجو ها و مدلسازی هزینه حافظه اصلی مطرح کرده اند که در ادامه به بررسی این دو نمونه می پردازیم.
Office-By-Example (OBE)
OBE یک پایگاه داده در حافظه اصلی است که بسیاری از مفاهیمQuery-by-example(QBE)، را گسترش می دهد. برای بهینه سازی پرس و جو، مبتنی بر هزینه، OBE یک مدل کامل از هزینه را ارائه می دهد. باتوجه به این پیش فرض که داده هایی که پردازش می شوند در حافظه اصلی قرار گرفته اند، عامل اصلی هزینه در پایگاه داده های متداول که همان دسترسی I/O است حذف خواهد شد.