دانلود مقاله پتانسیومتر

Word 493 KB 21949 53
مشخص نشده مشخص نشده الکترونیک - برق - مخابرات
قیمت قدیم:۲۴,۰۰۰ تومان
قیمت: ۱۹,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • پتانسیل سنج ،) وسیله‌ای الکتریکی است که از قطعه سیمی مقاوم (یا از ماده مقاوم الکتریکی) با مقاومت R تشکیل شده است و روی آن یک سر اتصال لغزنده قرار دارد.

    که با سیم اتصال الکتریکی برقرار می‌کند و معمولا در آزمایشگاه برای تنظیم و کنترل جریان از یک مقاومت متغیر استفاده می‌شود.

    پتانسیل منبع در سه محل اتصال الکتریکی دارد.

    عبارت است از نقطه A و B در دو سر سیم مقاوم و سر اتصال لغزنده T، پیچ تنظیم صدای رادیو یا وسایل صوتی دیگر ، پتانسیل سنجی ساده و ارزان قیمت است.

    اما پتانسیل سنج دقیق وسیله‌ای گرانقیمت است که برای اندازه‌گیری ولتاژ با دقت بسیار زیاد بکار برده می‌شود.


    اساس کار پتانسیومتر
    اگر اتصال بین نقطه A و T برقرار شود، این وسیله به یک مقاومت قابل تنظیم یا رئوستا تبدیل می‌شود.

    مقاومت بین نقطه‌های A و T و شکل R1 نشان داده می شود.

    با حرکت سر اتصال لغزنده T در طول سیم مقاوم ، از سر اتصال A تا سر اتصال B ، مقاومت R1 از صفر تا مقدار R تغییر می‌کند.

    نام پتانسیل سنج از آنجا گرفته شده است که این وسیله می‌تواند مقادیر مختلف اختلاف پتانسیل الکتریکی که یا ولتاژ ، میان سر اتصال T و یکی از دو سر سیم پتانسیل سنج (مثلا نقطه A) را بسنجد.

    فرض کنید باتری با نیروی محرکه الکتریکی V به دو سر A و B ، وصل شده است.

    مقاومت بین A و T را R1 و مقاومت بین B و T را R2 می‌گیریم.

    به این ترتیب ، این دو مقاومت یک تقسیم کننده ولتاژ محسوب می‌شود.

    ولتاژ میان دو سر اتصال A و T را VTA کسری از ولتاژ میان A و B که VBA است.

    در این صورت مقاومت R1 + R2 ثابت و برابر با مقاومت پتانسیل سنج ، R است.

    هنگامی که لغزنده در طول سیم مقاوم حرکت می‌کند، مقاومت R1 از صفر تا R و ولتاژ VTA بیان نقطه‌های A و T از صفر تا VRA تغییر می‌کند.

    این کار ، روش ساده‌ای برای تولید ولتاژ متغیر با استفاده از ولتاژ ثابت است.






    مثال کاربردی
    در مورد پیچ تنظیم صدای رادیو ، ولتاژ VBA داده شده به پتانسیل سنج ، ولتاژی با بسامد صوتی متناظر با موج صوتی است.

    مقدار متغیر ولتاژ دو سر اتصال پتانسیل سنج (VTA) به بلندگو داده می‌شود.

    (از طریق تقویت کننده رادیو) و با حرکت لغزنده شدت صوتی که از رادیو می‌شنویم، تغییر می‌کند.


    پتانسیومتر دقیق
    در پتانسیل سنجهای دقیق ، نسبت مقاومتهای R1 و R1 با دقت زیاد قابل تنظیم است.

    در این نوع وسایل ، یک باتری با ولتاژ V از طریق رئوستای r به پتانسیل سنج وصل می‌شود.

    و رئوستا تا جایی میزان می‌شود که ولتاژ VBA مقدار معین و دقیقی (مثلا 1.6000 ولت) داشته باشد.

    هنگامی که ولتاژ نامعلوم Vx را از طریق گالوانومتر به سر اتصال T اعمال می‌کنیم.

    نسبت R1/R را آنقدر تغییر می‌دهیم تا گالوانومتر عبور هیچ جریانی را نشان ندهد.

    در این شرایط ، ولتاژ Vx برابر است با (VBA(R1/R.






    روش درجه بندی ولتاژ
    برای درجه بندی ولتاژ VBA ، پیل استانداردی را با ولتاژ دقیقا معلوم به جای Vx قرار می‌دهیم، نسبت R1/R متناظر با این ولتاژ را تنظیم ، رئوستای r را برای جریان صفر گالوانومتر میزان می‌کنیم.

    با استفاده از پتانسیل سنج بسیار دقیق می‌توان ولتاژها را تا پنج رقم با معنی و تا حد میلی ولت هم اندازه ‌گیری کرد.

    اما ، فرآیند اندازه گیری با پتانسیل سنج کند و دستگاه اندازه ‌گیری هم پر حجم است.

    در حال حاضر ، بیشتر اندازه گیریهای دقیق ولتاژ با استفاده از ولت سنجهای رقمی و دقیق انجام می‌گیرند.

    پتانسیل سنج را برای درجه بندی ولت سنج رقمی می‌توان بکار برد.
    برای درجه بندی ولتاژ VBA ، پیل استانداردی را با ولتاژ دقیقا معلوم به جای Vx قرار می‌دهیم، نسبت R1/R متناظر با این ولتاژ را تنظیم ، رئوستای r را برای جریان صفر گالوانومتر میزان می‌کنیم.

    پتانسیل سنج را برای درجه بندی ولت سنج رقمی می‌توان بکار برد.

    دیاک : دیاک عنصری دوپایه است و مشابه ترانزیستوری است که بیس ندارد.

    از هر دو طرف (بایاس مستقیم و معکوس ) جریان را عبور می دهد و روشن شدن آن بستگی به ولتاژ آستانه تعریف شده ( یا شکست ) دارد.

    دیاک درتولید پالس بکار برده می شود.در واقع دیاک و تریستور و ترایاک هم خانواده اند و همگی در حالت کلی مانند دیود خاصیت هدایت کنندگی دارند اما با این تفاوت که تریستور و ترایاک عناصر سه پایه ای هستند که تکامل یافته اند و علاوه بر اینکه از هر دو طرف جریان را عبور میدهند دارای پایه گیت برای کنترل زمان عبور جریان نیز میباشند.

    ترایاک : ترایاک نمونه پیشرفته تر تریستور است ٬ که هدایت دو طرفه ولتاژ از مشخصه های آن به شمار می آید.

    این قطعه نیز 3 پایه دارد که ((ترمینال شماره ی یک ولتاژ اصلی یا MT1)) و (( ترمینال شماره دو ولتاژ اصلی یا MT2 )) و ((گیت)) نامیده میشوند.

    ولتاژ اعمال شده به MT2 نسبت به ولتاژ MT1 چه مثبت باشد و چه منفی میتوان پالسهای تحریک مثبت و منفی را به گیت اعمال کرد(نسبت به MT1).بنابر این ترایاک برای کنترل تمام موج سیگنال AC مناسب بوده و آن را مانند تریستور میتوان مورد استفاده قرار داد.

    روشن و خاموش شدن تریستور و ترایاک با سرعت بسیار زیادی صورت میپذیرد در نتیجه پالسهای گذرای بسیار کوتاهی ایجاد میشود ٬ که ممکن است مسافت بسیار زیادی را در طول سیم طی کنند.برای جلوگیری از ایجاد چنین نویزهایی ٬ معمولا استفاده از نوعی فیلتر LC ضروری خواهد بود.

    ترمیستورها : یکی از مشخصه های مورد نظر در مورد مقاومتهای معمولی این است که در محدوده وسیعی از تغییرات دمای محیطی ٬ مقاومت آنها تغیر نکند.

    اما تر میستورها(یعنی مقاومتهای حرارتی) آگاهانه بصورتی ساخته شده اند کهمشخصه هایشان با تغییر دمای محیط تغییر کند.به این ترتیب آنها را میتوان به عنوان سنسور ٬ و یا قطعات جبران کننده تغییرات حرارتی مورد استفاده قرار داد.

    دو نوع ترمیستور اصلی وجود دارد : با ضریب حرارتی منفی (N.T.C) و ضریب حرارتی مثبت ( P.T.C) .

    در دمای 25 درجه سانتیگراد ٬ مقاومت نمونه های معمول N.T.C در حدود چند صد اهم (یا چند کیلو اهم) میباشد که با افزایش دما تا 100 درجه سانتیگراد ٬ مقاوت آن تا حد دهها اهم کاهش می یابد .اما مقاومت P.T.C در محدوده صفر تا 75 درجه سانتیگراد تقریبا ثابت است(معمولا در حدود 100 اهم).در درجه حرارت بالاتر از این حد(معمولا 120 _ 80 درجه سانتیگراد)مقاومت آن به سرعت بالا میرود(حد اکثر تا 10 کیلو اهم).

    تریستورها : تریستورها(که به آنها یکسوسازهایی با کنترل سیلیکونی نیز میگویند) 3 پایه داشته ٬ و میتوان آنها را برای قطع و وصل و یا کنترل توان سیگنالهای AC نیز مورد استفاده قرار داد.ترمیستور نیز مانند دیود ((آند)) و ((کاتد)) دارد.

    اما علاوه بر آنها پایه سومی به نام ((گیت)) نیز وجود دارد ٬ که با اعمال پالس جریانی کوتاه مدت از آن طریق ٬ میتوان تریستور را تحریک کرد.

    بسته به شرایط موجود این قطعه با سرعت زیادی از حالت هدایت به حالت قطع میرود.در حالت ((قطع)) فقط جریان نشتی بسیار اندکی از تریستور عبور میکند که میتوان آن را نادیده گرفت(مقاومت بسیار بزرگی از خود نشان میدهد) ٬ اما مقاومت آن در حالت (( روشن)) بسیار اندک است.وقتی تریستور روشن شود در همان حالت باقی میماند ( یعنی در واقع در همان حالت قفل میشود) و تا زمانی که جریان مستقیم آن قطع نشده باشد ٬ در این حالت برقرار خواهد ماند.

    در مدارهای DC تا زمانی که ولتاژ تغذیه قطع نشود ٬ تریستور همچنان روشن خواهد ماند اما در مدارهای AC با هر بار معکوس شدن قطبیت سیگنال AC ترمیستور به صورت خودکار خاموش خواهد شد.

    اهم متر دید کلی اصولا مولتی مترها ابزاری در صنعت الکترونیک هستند که برای اندازه گیری جریان و ولتاژ مقاومت بکار می‌روند.

    این ابزارها بر دو نوع آنالوگ و دیجیتال تقسیم بندی شده اند.

    در نوع آنالوگ عقربه‌ای است که بر روی یک صفحه مدرج حرکت می‌کند.

    در نوع دیجیتال ابتدا پارامتر الکتریکی مورد نظر به سیگنال پالسی تبدیل می‌گردد، پالسهای مزبور در دستگاه اندازه گیری بوسیله آی سی های شمارنده شمرده شده و توسط نشان دهنده‌های دیجیتال به صورت رقمی نشان داده می‌شود.

    اساس اندازه گیری مقاومت اساس اندازه گیری مقاومت بر قانون ساده اهم است، به این ترتیب که هر گاه r مقاومت داخلی ولت متر و ولتاژ منبع جریان ، R مقاومت مجهول مفروض باشد بر طبق قانون اهم رابطه زیر بین آنها برقرار می‌شود: R = (e - E)/E/r e و E به ترتیب مقدار ولتی است که صفحه مدرج ولت متر قبل از قرار دادن R در مدار نشان می‌دهد که این دو مقدار باید با استفاده از یک حساسیت اندازه گیری شود.

    انحراف عقربه هر چقدر مقاومت مجهول R کوچکتر باشد انحراف عقربه بیشتر است و بالعکس در این صورت یعنی برای اندازه گیری دقیق مقاومتها حساسیت دستگاه برعکس مقدار مقاومت مورد اندازه تنظیم می‌شود.

    یعنی برای اندازه گیری مقاومتهای بزرگتر ولتاژ زیادی ضروری است.

    برای اندازه گیری مقاومتهای مجهول به محاسبه فوق احتیاجی نیست، زیرا وقتی ولت متر به صورت اهم متر بکار می‌رود درجات صفحه مدرج بر طبق رابطه بالا با مقیاس اهم تقسیم بندی شده است.

    اندازه گیری مقاومتهای کمتر از صد اهم برای اندازه گیری چنین مقاومتهایی مقاومت مجهول R بطور موازی به میلی آمپر متر وصل شده و بطور سری به R1 وصل می شود در این صورت مقاومت مجهول R از رابطه زیر بدست می‌آید: R = IR1/I-i که I و i جریانی است که به ترتیب میلی آمپر mA قبل و بعد از قرار دادن R نشان می‌دهد.

    کاربردهای اهم متر از یک اهم متر می‌توان برای آزمایش نیمه هادیهایی مثل دیود و ترانزیستور استفاده کرد.

    همانطور که می‌دانید دیود در حالت بایاس (گرایش) مستقیم دارای مقاومت کم و در حالت بایاس معکوس دارای مقاومت بسیار زیادی است، بنابراین دیود تحت آزمایش باید در یک جهت جریان را عبور داده و در جهت دیگر مانع از عبور آن گردد، به عبارت دیگر مقاومت اهمی دیود در یک جهت کم و در جهت دیگر زیاد می‌باشد، البته این روش برای آزمایش و تست دیودهای پیوندی معمولی است و نمی‌توان از آن برای دیودهای دیگر مانند زنر استفاده کرد.

    یک ترانزیستور از لحاظ عملکرد درست مانند دو دیود که کاتد یا آندهایشان به هم متصل شده است می‌باشد، بنابراین پایه‌های بیس ، امیتر باید در یک جهت دارای مقاومت زیاد و در جهت دیگر دارای مقاومت کم باشد.

    همچنین مقاومت بین پایه‌های امیتر ، کلکتور در هر دو جهت باید زیاد باشد در غیر این صورت ترانزیستور خراب است.

    یکی دیگر از کاربردهای اهم متر در آزمایش خازنها (مخصوصا خازنهای الکترولیتی) است.

    با استفاده از یک اهم متر می‌توان پی به سالم بودن یا خراب بودن خازنها برد.

    فرض کنید می‌خواهیم خازن 0.25 میکروفاراد را آزمایش‌کنیم دو سر خازن را به سیمهای پروب اهم متر وصل می‌کنیم و آن را در وضعیت Rx10000 قرار می‌دهیم .اگر خازن مزبور دارای نشت باشد عقربه اهم متر مقدار ثابت مقاومت را نشان خواهد داد، اما در مورد خازن سالم عقربه پس از انحراف کمی که به سمت راست پیدا می‌کند به سر جای خود بر می‌گردد.

    اگر در این حالت عقربه به هیچ وجه به سمت راست حرکت نکرد و مقاومت بی‌نهایت را نشان داد پایه‌های خازن از داخل قطع است و باید دور انداخته شود.

    هنگامی که خازن 0.25 میکروفارادی سالم است به هنگام تعویض سیمهای پروب عقربه به اندازه یک چهارم پانل به سمت راست منحرف شدند و سپس با سرعت بجای خود بر می‌گردد.

    سلکتور یا کلید انتخابگر معمولا در مولتی مترها دو کلید در سلکتور دیده می‌شود که یکی بزرگتر است و در وسط قرار گرفته است.

    کلید وسط Range Salitch نام دارد که ردیفهای قابل اندازه گیری را تعیین می‌کند و کلید کوچک کناری Function Switch نام دارد که برای انتخاب پارامتر مورد سنجش بکار می‌رود.

    به هنگام اندازه گیری مقاومت پس از قرار دادن کلیدها در وضعیت مناسب دو سر پروب را به هم متصل می‌کنیم و با چرخاندن دگمه ZERO OHMS عقربه مولتی متر را بر روی صفر اهم ثابت می‌کنیم.

    صفحه مدرج مقداری که بر روی صفحه مدرج می‌خواهیم باید متناسب با رنج یا ردیفی باشد که توسط سلکتور بزرگ انتخاب کرده‌ایم، این موضوع در صحیح خواندن پارامترهای مورد اندازه گیری بسیار مهم است و باید مورد نظر قرار داد.

    درجه بندی مربوط به مقاومت که با اهم (OHMS) نشان داده شده است، بسیار غیر خطی است.

    علت این امر این است که خود اندازه گیر دارای مقاومت داخلی می‌باشد که بر روی مقاومت مورد اندازه گیری اثر می‌گذارد مولتی مترهایی که در حالت اهم دارای وضعیتهای متفاوتی می‌باشند.

    کلید سلکتور را باید در وضعیتی قرار داد که به هنگام اندازه گیری مقاومت یک قطعه یا بخش از یک مدار ، عقربه تا وسط حرکت کند، در این حالت مقدار خوانده شده بر روی صفحه مدرج خطای کمتری را دارا خواهد بود.

    دیود مقدمه دیودها جریان الکتریکی را در یک جهت از خود عبور می‌‌دهند و در جهت دیگر در مقابل عبور جریان از خود مقاومت بالایی نشان می‌‌دهند.

    این خاصیت آنها باعث شده بود تا در سالهای اولیه ساخت این وسیله الکترونیکی ، به آن دریچه یا Valve هم اطلاق شود.

    از لحاظ الکتریکی یک دیود هنگامی عبور جریان را از خود ممکن می‌‌سازد که شما با برقرار کردن ولتاژ در جهت درست (+ به آند و - به کاتد) آنرا آماده کار کنید.

    مقدار ولتاژی که باعث می‌شود تا دیود شروع به هدایت جریان الکتریکی نماید ولتاژ آستانه یا (forward voltage drop) نامیده می‌شود که چیزی حدود 0.6 تا 0.6 ولت می‌‌باشد.

    ولتاژ معکوس هنگامی که شما ولتاژ معکوس به دیود متصل می‌‌کنید (+ به کاتد و - به آند) جریانی از دیود عبور نمی‌کند، مگر جریان بسیار کمی که به جریان نشتی یا Leakage معرف است که در حدود چند µA یا حتی کمتر می‌‌باشد.

    این مقدار جریان معمولآ در اغلب مدارهای الکترونیکی قابل صرفنظر کردن بوده و تأثیر در رفتار سایر المانهای مدار نمی‌گذارد.

    اما نکته مهم آنکه تمام دیودها یک آستانه برای حداکثر ولتاژ معکوس دارند که اگر ولتاژ معکوس بیش از آن شود دیود می‌‌سوزد و جریان را در جهت معکوس هم عبور می‌‌دهد.

    به این ولتاژ آستانه شکست یا Breakdown گفته می‌شود.

    دسته بندی دیودها در دسته بندی اصلی ، دیودها را به سه قسمت اصلی تقسیم می‌‌کنند، دیودهای سیگنال (Signal) که برای آشکار سازی در رادیو بکار می‌‌روند و جریانی در حد میلی آمپر از خود عبور می‌‌دهند، دیودهای یکسو کننده (Rectifiers) که برای یکسو سازی جریانهای متناوب بکار برده می‌‌شوند و توانایی عبور جریانهای زیاد را دارند و بالاخره دیودهای زنر (Zener) که برای تثبیت ولتاژ از آنها استفاده می‌شود.

    اختراع دیود پلاستیکی (plastic diode) محققان فیزیک دانشگاه اوهایو (Ohio State University) توانستند دیود تونل پلیمری اختراع کنند.

    این قطعه الکترونیکی منجر به ساخت نسل آینده حافظه‌های پلاستیکی کامپیوتری و چیپهای مدارات منطقی خواهد شد.

    این قطعات کم مصرف و انعطاف پذیر خواهند بود.

    ایده اصلی از سال 2003 که یک دانشجوی کارشناسی دانشگاه اوهایو ، سیتا اسار ، شروع به طراحی سلول خورشیدی پلاستیکی نمود بوجود آمد.

    تیم پژوهشی توسط پاول برگر (Paul Berger) ، پروفسور الکترونیک و مهندسی کامپیوتر و همچنین پروفسور فیزیک دانشگاه اوهایو رهبری می‌شود.

    دیود پیوندی دید کلی دیود یک قطعه ‌الکترونیکی است که ‌از به هم چسباندن دو نوع ماده n و p (هر دو از یک جنس ، سیلیسیم یا ژرمانیم) ساخته می‌شود.

    چون دیود یک قطعه دو پایانه ‌است، اعمال ولتاژ در دو سر پایانه‌هایش سه حالت را پیش می‌آورد.

    دیود بی بایاس یا بدون تغذیه که ولتاژ دو سر دیود برابر صفر است و جریان خالص بار در هر جهت برابر صفر است.

    بایاس مستقیم یا تغذیه مستقیم که ولتاژ دو سر دیود بزرگتر از صفر است که ‌الکترونها را در ماده n و حفره‌ها را در ماده p تحت فشار قرار می‌دهد تا یونهای مرزی با یکدیگر ترکیب شده و عرض ناحیه تهی کاهش یابد.

    (گرایش مستقیم دیود) تغذیه یا بایاس معکوس که ولتاژ دو سر دیود کوچکتر از صفر است، یعنی ولتاژ به دو سر دیود طوری وصل می‌شود که قطب مثبت آن به ماده n و قطب منفی آن به ماده p وصل گردد و به علت کشیده شدن یونها به کناره عرض ناحیه تهی افزایش می‌یابد (گرایش معکوس دیود).

    دیودهای نور گسل در دیودی که بایاس مستقیم دارد، الکترونهای نوار رسانش از پیوندگاه عبور کرده و به داخل حفره‌ها می‌افتند.

    این الکترونها به هنگام صعود به نوار رسانش انرژی دریافت کرده بودند که به هنگام برگشت به نوار ظرفیت انرژی دریافتی را مجددا تابش می‌کنند.

    در دیودهای یکسوساز این انرژی به صورت گرما پس داده می‌شود، ولی دیودهای نور گسل LED این انرژی را به صورت فوتون تابش می‌کنند.

    فوتودیودها انرژی گرمایی باعث تولید حامل‌های اقلیتی‌ در دیود می‌گردد.

    با افزایش دما جریان دیود در بایس معکوس افزایش می‌یابد.

    انرژی نوری هم همانند انرژی گرمایی باعث بوجود آمدن حاملهای اقلیتی ‌می‌گردد.

    کارخانه‌های سازنده با تعبیه روزنه‌ای کوچک برای تابش نور به پیوندگاه دیودهایی را می‌سازند که فوتودیود نامیده می‌شوند.

    وقتی نور خارجی به پیوندگاه یک فوتودیود که بایس مستقیم دارد فرود آید، زوجهای الکترون _ حفره در داخل لایه تهی بوجود می‌آیند.

    هرچه نور شدیدتر باشد، مقدار حاملهای اقلیتی ‌نوری افزایش یافته، در نتیجه جریان معکوس بزرگتر می‌شود.

    به ‌این دلیل فوتودیودها را آشکارسازهای نوری گویند.

    وراکتور نواحی p و n در دو طرف لایه تهی را می‌توان مانند یک خازن تخت موازی در نظر گرفت، ظرفیت این خازن تخت موازی را ظرفیت خازن انتقال یا ظرفیت پیوندگاه گویند.

    ظرفیت خازن انتقال CT هر دیود با افزایش ولتاژ معکوس کاهش می‌یابد.

    دیودهای سیلسیم که برای این اثر ظرفیتی طراحی و بهینه شده‌اند، دیود با ظرفیت متغییر یا وارکتور نام دارند.

    وراکتور موازی با یک القاگر تشکیل یک مدار تشدید را می‌دهد که با تغییر ولتاژ معکوس وراکتور می‌توانیم فرکانس تشدید را تغییر بدهیم.

    دیودهای شاتکی دیود شاتکی یک وسیله تک‌قطبی است که در آن به جای استفاده ‌از دو نوع نیمه ‌هادی p و n متصل به هم ، معمولا از یک نوع نیم ‌هادی سیلیسیم نوع n با یک اتصال فلزی مانند طلا – نقره یا پلاتین استفاده می‌شود.

    در هر دو ماده ‌الکترون حامل اکثریت را تشکیل می‌دهد.

    وقتی که دو ماده به هم متصل می‌شوند، الکترونها در ماده سیلیسیم نوع n فورا به داخل فلز نفوذ می‌کنند و یک جریان سنگینی از بارهای اکثریت بوجود می‌آید.

    دیود شاتکی لایه تهی ذخیره بار ندارد.

    کاربرد این دیود در فرکانس‌های خیلی بالاست.

    دیودهای زنر این دیود سیلیسیم برای کار در ناحیه شکست طراحی و بهینه شده است، گاهی آن را دیود شکست هم می‌گویند.

    با تغییر میزان آلایش ، کارخانه‌های سازنده می‌توانند دیودهای زنری بسازند که ولتاژ شکست آنها از دو تا دویست ولت تغییر کند.

    با اعمال ولتاژ معکوس که ‌از ولتاژ شکست زنر بگذرد، وسیله‌ای خواهیم داشت که مانند یک منبع ولتاژ ثابت عمل می‌کند.

    وقتی غلظت آلایش در دیود خیلی زیاد باشد، لایه تهی بسیار باریک می‌شود.

    میدان الکتریکی در لایه تهی بسیار شدید است.

    میدان چنان شدید است که ‌الکترونها را از مدارهای ظرفیت خارج می‌کند.

    ایجاد الکترونهای آزاد به ‌این روش را شکست زنر می‌نامیم.

    کاربردها قطعات پیوندی p - n در صنعت الکترونیک از اهمیت ویژه‌ای برخوردارند.

    به عنوان مثال دیودهای نور افشان LED در نمایشگرهای دیجیتالی و گسیلنده‌های نور قرمز GaAs و InP بویژه برای سیستمهای مخابرات نوری مناسب هستند.

    آرایش لیزر نیم رسانا ، آشکارساز نوری را می‌توان در سیستم دیسک فشرده برای خواندن اطلاعات دیجیتال از دیسک چرخان مورد استفاده قرار داد.

    کاربرد بسیار مهم پیوندها به عنوان باتری‌های خورشیدی است که ‌انرژی نوری جذب شده را به انرژی ‌الکتریکی مفید تبدیل می‌کنند.

    دیودهای با ظرفیت متغیر در تولید رمونی‌ها ، مخرب فرکانس‌های مایکروویو و فیلترهای فعال است.

    دیودهای زنر به عنوان مرجع در مدارهایی که نیازمند مقدار معینی از ولتاژ هستند، استفاده می‌شوند .

    دیود نوری دید کلی قطعات دو پایانه طراحی شده برای پاسخ به جذب فوتون ، دیودهای نوری نامیده می‌شوند.

    برخی از دیودهای نوری سرعت پاسخ و حساسیت بسیار بالایی دارند.

    از آنجایی که ‌الکترونیک نوین علاوه بر سیگنالهای الکتریکی اغلب دارای سیگنالهای نوری نیز می‌باشد، دیودهای نوری نقش مهمی ‌را به عنوان قطعات الکترونیک ایفا می‌کنند.

    غالبا از قطعات پیوندی برای بهبودی سرعت پاسخ و حساسیت آشکارسازهای نوری یا تابشهای پر انرژی استفاده می‌شود.

    ولتاژ و جریان در یک پیوند نور تابیده رانش حاملین بار اقلیت در دو سر یک پیوند تولید جریان می‌کنند، بویژه حاملین بار تولید شده در ناحیه تهی w توسط میدان پیوند جدا شده ‌الکترونها در ناحیه n و حفره‌ها در ناحیه p جمع می‌شوند.

    همچنین حاملین بار اقلیت که به صورت گرمایی در فاصله یک طول نفوذ از طرفین پیوند تولید می‌شوند، به ناحیه تهی نفوذ کرده و توسط میدان الکتریکی به طرف دیگر جاروب می‌شوند.

    اگر پیوند بطور یکنواخت توسط فوتون‌های با انرژی hv>Eg تحت تابش قرار گیرد، یک نرخ تولید اضافی در این جریان مشارکت می‌کند و ولتاژ مستقیم در هر دو سر یک پیوند نور تابیده به نام پدیده فوتوولتائیک ایجاد می‌شود.

    باتریهای خورشیدی امروزه برای تأمین توان الکتریکی مورد نیاز بسیاری از ماهواره‌های فضایی از آرایه‌های باتری خورشیدی از نوع پیوندی p-n استفاده می‌شود.

    باتریهای خورشیدی می‌توانند توان مورد نیاز تجهیزات داخل یک ماهواره را در مدت زمان طولانی فراهم سازند.

    آرایه‌های پیوندی را می‌توان در سطح ماهواره توزیع و یا اینکه در باله‌های باتری خورشیدی متصل به بدنه ‌اصلی ماهواره جا داد.

    برای بهره گیری از بیشترین مقدار انرژی نوری موجود ، لازم است که باتری خورشیدی دارای پیوندی با سطح مقطع بزرگ و در نزدیکی سطح قطعه باشد.

    پیوند سطحی توسط نفوذ یا کاشت یون تشکیل شده و برای جلوگیری از انعکاس و نیز کاهش بازترکیب ، سطح آن با مواد مناسب پوشیده می‌شود.

    آشکارسازهای نوری یک چنین قطعه‌ای برای اندازه گیری سطوح روشنایی یا تبدیل سیگنالهای نوری متغیر با زمان به سیگنالهای الکتریکی وسیله‌ای مناسب است.

    در بیشتر آشکارسازهای نوری سرعت پاسخ آشکارساز بسیار مهم است.

    مرحله نفوذ حاملین بار امری زمان‌بر است و باید در صورت امکان حذف شود.

    پس مطلوب است که پهنای ناحیه تهی به ‌اندازه کافی بزرگ باشد تا اکثر فوتون‌ها به‌جای نواحی خنثی n و p در درون ناحیه تهی جذب شوند.

    وقتی که یک EHP در ناحیه تهی بوجود آید، میدان الکتریکی ، الکترون را به طرف n و حفره را به طرف p می‌کشد.

    چون این رانش حاملین بار در زمان کوتاهی رخ می‌دهد، پاسخ دیود نوری می‌تواند بسیار سریع باشد.

    هنگامی ‌که حاملین بار عمدتا در ناحیه تهی w ایجاد شوند، به آشکارساز یک دیود نوری لایه تهی گفته می‌شود.

    اگر w پهن باشد، اکثر فوتونهای تابشی در ناحیه تهی جذب خواهند شد.

    w پهن منجر به کاهش ظرفیت پیوند شده و در نتیجه ثابت زمانی مدار آشکارساز را کاهش می‌دهد.

    نحوه کنترل پهنای ناحیه تهی روش مناسب برای کنترل پهنای ناحیه تهی ساختن یک آشکارساز نوری p-i-n است.

    ناحیه i مادامی که مقاومت ویژه زیاد است، لزومی ‌ندارد که حقیقتا ذاتی باشد.

    می‌توان آن را به روش رونشستی روی بستر نوع n رشد داد و ناحیه p را توسط نفوذ ایجاد کرد.

    هنگامی‌ که ‌این قطعه در گرایش معکوس قرار می‌گیرد، ولتاژ وارده تقریبا بطور کامل در دو سر ناحیه i ظاهر می‌شود.

    برای آشکارسازی سیگنالهای نوری ضعیف اغلب مناسب است که دیود نوری در ناحیه شکست بهمنی مشخصه‌اش عمل کند.

    نویز و پهنای باند آشکارسازهای نوری در سیستمهای مخابرات نوری حساسیت آشکارسازهای نوری و زمان پاسخ آنها بسیار مهم است.

    متاسفانه ‌این دو ویژگی عموما با هم بهینه نمی‌شوند.

    مثلا در یک آشکارساز نوری بهره به نسبت طول عمر حاملین بار به زمان گذار وابسته ‌است.

    از سوی دیگر پاسخ فرکانسی نسبت عکس با طول عمر حاملین بار دارد.

    معمولا حاصلضرب بهره در پهنای باند را به عنوان ضریب شایستگی برای آشکارسازها ملاک قرار می‌دهند.

    طراحی برای افزایش بهره سبب کاهش پهنای باند می‌شود و برعکس ویژگی مهم دیگر آشکارسازها نسبت سیگنال به نویز است که مقدار اطلاعات مفید در مقایسه با نویز در زمینه آشکارساز را نشان می‌دهد.

    منبع اصلی نویز در نور رساناها نوسانات اتفاقی در جریان تاریک است.

    جریان نویز در تاریکی متناسب ، دما و رسانایی ماده ‌افزایش می‌یابد.

    افزایش مقاومت تاریک همچنین بهره نور رسانا را افزایش داده و بالطبع باعث کاهش پهنای باند می‌شود.

    کاربرد دیود نوری کاربرد باتریهای خورشیدی محدود به فضای دور نیست.

    حتی با تضعیف شدت تابش خورشید توسط جو می‌توان توسط این باتریها توان مفیدی را برای کاربردهای زمینی بدست آورد.

    یک باتری خوش ساخت از سیلیسیوم می‌تواند دارای بازده خوب در تبدیل انرژی الکتریکی باشد.

    خازن مقدمه خازن المان الکتریکی است که می‌تواند انرژی الکتریکی را توسط میدان الکترواستاتیکی (بار الکتریکی) در خود ذخیره کند.

    انواع خازن در مدارهای الکتریکی بکار می‌روند.

    خازن را با حرف C که ابتدای کلمه capacitor است نمایش می‌دهند.

    ساختمان داخلی خازن از دو قسمت اصلی تشکیل می‌شود: الف – صفحات هادی ب – عایق بین هادیها (دی الکتریک) ساختمان خازن هرگاه دو هادی در مقابل هم قرار گرفته و در بین آنها عایقی قرار داده شود، تشکیل خازن می‌دهند.

    معمولا صفحات هادی خازن از جنس آلومینیوم ، روی و نقره با سطح نسبتا زیاد بوده و در بین آنها عایقی (دی الکتریک) از جنس هوا ، کاغذ ، میکا ، پلاستیک ، سرامیک ، اکسید آلومینیوم و اکسید تانتالیوم استفاده می‌شود.

    هر چه ضریب دی الکتریک یک ماده عایق بزرگتر باشد آن دی الکتریک دارای خاصیت عایقی بهتر است.

    به عنوان مثال ، ضریب دی الکتریک هوا 1 و ضریب دی الکتریک اکسید آلومینیوم 7 می‌باشد.

    بنابراین خاصیت عایقی اکسید آلومینیوم 7 برابر خاصیت عایقی هوا است.

    انواع خازن الف- خازنهای ثابت سرامیکی خازنهای ورقه‌ای خازنهای میکا خازنهای الکترولیتی آلومینیومی تانتالیوم ب- خازنهای متغیر واریابل تریمر انواع خازن بر اساس شکل ظاهری آنها مسطح کروی استوانه‌ای انواع خازن بر اساس دی الکتریک آنها خازن کاغذی خازن الکترونیکی خازن سرامیکی خازن متغییر خازن مسطح (خازن تخت) دو صفحه فلزی موازی که بین آنها عایقی به نام دی الکتریک قرار دارد، مانند (هوا ، شیشه).

    با اتصال صفحات خازن به یک مولد می‌توان خازن را باردار کرد.

    اختلاف پتانسیل بین دو سر صفحات خازن برابر اختلاف پتانسیل دو سر مولد خواهد بود.

    ظرفیت خازن (C) نسبت مقدار باری که روی صفحات انباشته می‌شود بر اختلاف پتانسیل دو سر باتری را ظرفیت خازن گویند؛ که مقداری ثابت است.

    C = kε0 A/d C = ظرفیت خازن بر حسب فاراد Q = بار ذخیره شده برحسب کولن V = اختلاف پتانسیل دو سر مولد برحسب ولت ε0 = قابلیت گذر دهی خلا است که برابر است با: 8.85 × 12-10 _ C2/N.m2 k )بدون یکا( = ثابت دی الکتریک است که برای هر ماده‌ای فرق دارد.

    تقریبا برای هوا و خلأ 1=K است و برای محیطهای دیگر مانند شیشه و روغن 1 A = سطح خازن بر حسب m2 d =فاصله بین دو صفه خازن بر حسب m چند نکته آزمایش نشان می‌دهد که ظرفیت یک خازن به اندازه بار (q) و به اختلاف پتانسیل دو سر خازن (V) بستگی ندارد بلکه به نسبت q/v بستگی دارد.

    بار الکتریکی ذخیره شده در خازن با اختلاف پتانسیل دو سر خازن نسبت مستقیم دارد.

    یعنی: q a v ظرفیت خازن با فاصله بین دو صفحه نسبت عکس دارد.

    یعنی: C a 1/d ظرفیت خازن با مساحت هر یک از صفحات و جنس دی الکتریک (K )نسبت مستقیم دارد.

    یعنی: C a A و C a K شارژ یا پر کردن یک خازن وقتی که یک خازن بی بار را به دو سر یک باتری وصل کنیم؛ الکترونها در مدار جاری می‌شوند.

    بدین ترتیب یکی از صفحات بار (+) و صفحه دیگر بار (-) پیدا می‌کند.

    آن صفحه‌ای که به قطب مثبت باتری وصل شده ؛ بار مثبت و صفحه دیگر بار منفی پیدا می‌کند.

    خازن پس از ذخیره کردن مقدار معینی از بار الکتریکی پر می‌شود.

    یعنی با توجه به اینکه کلید همچنان بسته است؛ ولی جریانی از مدار عبور نمی‌کند و در واقع جریان به صفر می‌رسد.

    یعنی به محض اینکه یک خازن خالی بدون بار را در یک مدار به مولد متصل کردیم؛ پس از مدتی کوتاه عقربه گالوانومتر دوباره روی صفر بر می‌گردد.

    یعنی دیگر جریانی از مدار عبور نمی‌کند.

    در این حالت می‌گوییم خازن پرشده است.

    دشارژ یا تخلیه یک خازن ابتدا خازنی را که پر است در نظر می‌گیریم.

    دو سر خازن را توسط یک سیم به همدیگر وصل می‌کنیم.

    در این حالت برای مدت کوتاهی جریانی در مدار برقرار می‌شود و این جریان تا زمانی که بار روی صفحات خازن وجود دارد برقرار است.

    پس از مدت زمانی جریان صفر خواهد شد.

    یعنی دیگر باری بر روی صفحات خازن وجود ندارد و خازن تخلیه شده است.

    اگر خازن کاملا پر شود دیگر جریانی برقرار نمی‌شود و اگر خازن کاملا تخلیه شود باز هم جریانی برقرار نمی‌شود.

    تأثیر ماده دی‌الکتریک در فضای بین دو صفحه موازی یک خازن وقتی که خازنی را به مولدی وصل می‌کنیم؛ یک میدان یکنواخت در داخل خازن بوجود می‌آید.

    این میدان الکتریکی بر توزیع بارهای الکتریکی اتمی عایقی که در درون صفحات قرار دارد اثر می‌گذارد و باعث می‌شود که دو قطبیهای موجود در عایق طوری شکل گیری کنند؛ که در یک سمت عایق بارهای مثبت و در سمت دیگر آن بارهای منفی تجمّع کنند.

    توزیع بارهایی که در لبه‌های عایق قرار دارند؛ بر بارهای روی صفحات خازن اثر می‌گذارد.

    یعنی بارهای منفی روی لبه‌های عایق؛ بارهای مثبت بیشتری را روی صفحات خازن جمع می‌کند؛ و همینطور بارهای مثبت روی لبه‌های عایق بارهای منفی بیشتری را روی صفحات خازن جمع می‌کند.

    بنابراین با افزایش ثابت دی الکتریک (K) می‌توان بارهای بیشتری را روی خازن جمع کرد و باعث افزایش ظرفیت یک خازن شد.

    با گذاشتن دی الکتریک در بین صفحات یک خازن ظرفیت آن افزایش می‌یابد.

    میدان الکتریکی درون خازن تخت در فضای بین صفحات خازن بار دار میدان الکتریکی یکنواختی برقرار می‌شود که جهت آن همواره از صفحه مثبت خازن به سمت صفحه منفی خازن است.

    اندازه میدان همواره یک عدد ثابت می‌باشد.

    E=V/d E: میدان الکتریکی V: اختلاف پتانسیل دو سر خازن d: فاصله بین دو صفحه خازن میدان الکتریکی با اختلاف پتانسیل دو سر خازن نسبت مستقیم و با فاصله بین صفحات خازن نسبت عکس دارد.

    به هم بستن خازنها خازنها در مدار به دو صورت بسته می‌شوند: موازی متوالی (سری) بستن خازنها به روش موازی در بستن به روش موازی بین خازنها دو نقطه اشتراک وجود دارد.

    در این نوع روش: اختلاف پتانسیل برای همه خازنها یکی است.

    بار ذخیره شده در کل مدار برابر است با مجموع بارهای ذخیره شده در هریک از خازنها.

    ظرفیت معادل در حالت موازی مولد V = V1 = V2 = V3 بار کل Q = Q1 + Q2 + Q3 CV = C1V1 + C2V2 + C3V3 ظرفیت کل : C = C1 + C2 + C3 اندیسها مربوط به خازنهای 1 ؛ 2 و 3 می‌باشد.

    هرگاه چند خازن باهم موازی باشند، ظرفیت خازن معادل برابر است با مجموع ظرفیت خازنها.

    بستن خازنها بصورت متوالی در بستن به روش متوالی بین خازنها یک نقطه اشتراک وجود دارد و تنها دو صفحه دو طرف مجموعه به مولد بسته شده ؛ از مولد بار دریافت می‌کند.

    صفحات مقابل نیز از طریق القاء بار الکتریکی دریافت می‌کنند.

    بنابراین اندازه بار الکتریکی روی همه خازنها در این حالت باهم برابر است.

    در بستن خازنها به طریق متوالی:

کلمات کلیدی: پتانسیومتر

نگاه اجمالی پتانسیل سنج ، وسیله‌ای الکتریکی است که از قطعه سیمی مقاوم (یا از ماده مقاوم الکتریکی) با مقاومت R تشکیل شده است و روی آن یک سر اتصال لغزنده قرار دارد. که با سیم اتصال الکتریکی برقرار می‌کند و معمولا در آزمایشگاه برای تنظیم و کنترل جریان از یک مقاومت متغیر استفاده می‌شود. پتانسیل منبع در سه محل اتصال الکتریکی دارد. عبارت است از نقطه A و B در دو سر سیم مقاوم و سر اتصال ...

درباره دستور FDISK و چگونگي کار با آن : FDISK دستوري براي پارتيشن بندي هاردديسک است و 2 نگارش تحت DOS و ويندوز آن موجود است . با اجراي اولي FAT16 و دومي FAT32 ايجاد مي شود . FAT32 اسامي طولاني تري را براي فايل ها پشتيباني مي کند . براي اجراي اين نرم

مقدمه: این دستگاه برای نمایش و کنترل فشار سیستمهای مختلف یا تجهیزات در اندازه های کوچک با استفاده از اجزا فشار غیر رسانا می باشد و به صورت گسترده ای در دستگاه ماشین آلات نیمه رسانا ، تجهیزات پزشکی و سیستمهای اتوماتیک و غیره استفاده می شود. در ادامه درباری سنسور های فشار وکاربردانها بیشتر آشنا خاهیم شد. سنسورهای فشار دارای انواع واندازها وکاربردهای گوناگونی می باشندکه در این ...

پیشگفتار در این بخش مراحل کارهای انجام شده و طراحی های صورت گرفته برای ساخت مدارهای شارژر باتریها و درایور موتورهای dc که مورد استفاده قرار گرفته اند به اضافه مدار مولد PWM به طور دقیق تشریح شده است. ابتدا اجمالاً مطالبی را که در گزارشهای پیشین گفته شد مرور می کنیم- معرفی سلولهای خورشیدی و علت رواج استفاده از آن در سالهای اخیر و همچنین بلوک دیاگرام مدارهای لازم. بعد از آن به ...

ترانزیستور قابل تحریک PNPN بود که تریستور یا همون یکسو کننده کنترل شونده سیلیکونی SCR نام گرفت. از زمانی که اولین تریستور ازنوع یکسو کننده کنترل شونده سیلیکونی در اواخر سال 1957 اختراع شد تا زمان حاضر،پیشرفت های زیادی در الکترونیک قدرت رخ داده است. تا سال1970 تریستورهای معمولی منحصرا برای کنترل توان در کاربردهای صنعتی بکار میرفتند. از سال 1970 به بعد انواع مختلفی از عناصر نیمه ...

فرستنده امواج ویدئویی ( ویدئو سندر ) این مدار قابلیت ارسال همزمان صوت و تصویر را داراست و دارای دو ورودی مجزا برای صدا و تصویر می باشد. شما می توانید خروجی یک دوربین را به این مدار متصل نموده و بدون نیاز به سیم اطلاعات را توسط تلویزیون دریافت نمایید . این دستگاه دارای کاربردهای زیادی است از جمله : اتصال بی سیم دستگاههای بازی به تلویزیون ، استفاده از یک ویدئو و پخش تصویر در چند ...

ديودها جريان الکتريکي را در يک جهت از خود عبور مي‌‌دهند و در جهت ديگر در مقابل عبور جريان از خود مقاومت بالايي نشان مي‌‌دهند. اين خاصيت آنها باعث شده بود تا در سالهاي اوليه ساخت اين وسيله الکترونيکي ، به آن دريچه يا Valve هم اطلاق شود. از لحاظ الکتر

انکدر دوار مطلق : ساختمان انکدر نوع ديجيتال آن به ازاي هر زاويه ‌مشخص از محور (?) يک کد ديجيتال منحصر به فرد ايجاد مي کند . يک ورق فلزي ( برش يافته با مکانيسمي پيچيده ) به يک ديسک جدا کننده که کاملاً‌با محور درگير مي باشد چسبيده شده است . يک س

انواع مقاومت : مقاومت ها انواع مختلفي دارند . معمول ترين و متداول ترين نوع مقاومت ها ، مقاومت هاي کربني مي باشند که قيمت بسيار پاييني (حدود 10 تومان) دارند واز چند صدم اهم تا 10 ميليون اهم هستند . مقاومت هاي لايه کربني ، لايه فلزي ، اکسيد فلزي ، سيم

سيستم سوخت رساني انژکتوري: 1 واحد کنترل کننده الکترونيکي Ecu) موتور( 2 سنسور دور موتور 3 سنسور فشار هواي منيفولد 4 پتانسيومتر دريچه گاز 5 سنسور دماي آب 6 سنسور دماي هواي ورودي 7 سنسور سرعت خودرو 8 اکسيژن سنسور (فقط در خودرو پژو 206 وجود دارد) 9 با

ثبت سفارش
تعداد
عنوان محصول