دانلود تحقیق بیان ساده شده نظریه نیمرسانا

Word 176 KB 22579 30
مشخص نشده مشخص نشده الکترونیک - برق - مخابرات
قیمت قدیم:۱۶,۰۰۰ تومان
قیمت: ۱۲,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • بیان ساده شده نظریه نیمر سانا
    نیمرسانا ماده ای است که مقاومت ویژه آن خیلی کمتر از مقاومت ویژه عایق و در عین حال خیلی بیشتر از مقاومت ویژه رساناست، و مقاومت ویژه اش با افزایش دما کاستی می پذیرد.مثلا، مقاومت ویژه مس 8-10اهم - متر کوا رتز1012 اهم - متر ، و مقاومت ویژه مواد نیمرسانای ، یعنی سیلیسیم 5/ .

    اهم- متر و از آن ژرمانیم 2300 اهم -متر در دمای c27 است.

    برای درک عملکرد نیمرسانا ها و ابزار نیمرسانا ، قدری آشنایی با مفاهیم اساسی ساختار اتمی ماده ضروری است.


    دیو دهای نیمرسانا
    ساختمان
    دیود نیمرسانا وسیله ای است که در مقابل عبور جریان ، در یک جهت مقاومت زیاد و در جهت دیگر مقاومت کمی برو ز میدهد .

    دیود را به طور گستردهای و برای اهداف گوناگون در مدارهای الکترونیکی به کا ر می گیرند و اساساً شامل یک پیوند p-n است که از بلور سیلیسیوم و یا ژرمانیم تشکیل می شود .

    (شکل ب) نماد دیود نیمرسانا در شکل الف نموده شده است .
    جهتی که دیود در مقابل عبور جریان مخالقت کمی بروز میدهد با سر پیکان نشان داده شده است .


    دیود نیمر سانا نسبت به دیود گرما یونی از مزایای زیادی برخوردار است، این دیود به منبع گرم کن نیاز ندارد، بسیار کوچک تر و سبک تر است ، و قابلیت اطمینان بسیار بیشتری دارد.
    ژرمانیم یا سیلیسیمی که در ساخت دیود نیمرسانا به کار میرود باید ابتدا تا رسیدن به غلظت نا خالصی کمتر از یک جزء در 10 10 جزء پالوده شود.سپس اتمهای ناخالصی مطلوب ، بخشنده ها یا پذیرنده ها ، به مقادیر مورد لزوم اضافه شده و ماده به شکل یک تک بلور ساخته می شود.
    برای ساختن پولک ژرمانیم نوع n مقداری ژرمانیم ذاتی را با کمی ناخالصی در یک بوته ودر خلاءذوب می کنند، ویک بلور هسته را تا عمق چند میلیمتری در مذاب فرو می برند.

    دمای ژرمانیم مذاب در ست بالای نقطه ذوب بلور هسته قرار دارد ، و چند میلیمتری از هسته غوطه ور در مذاب نیز ذوب می شود .این هسته با سرعت ثابتی چرخانده می شود و همزمان به آرامی از مذاب بیرون کشیده می شود ، بدین سان یک بلور نوع n تشکیل شده است .

    با کنترل دقیق این فرایند می توان به غلظت نا خالصی مورد نیاز دست یافت.
    قرصی از ایندیم در یک پولک ژرمانیم قرار می دهند و به آن دمای با لاتر از نقطه ذوب ایندیم ولی پایین تراز نقطه ذوب ژرمانیم حرارت داده میشود.

    ایندیم ذوب می شود و ژرمانیم را حل می کند تا اینکه محلول اشباح شده از ژرمانیم در ایندیم به دست آید.

    سپس پولک به آرامی سرد می شود و در خلال سرد شدن یک ناحیه ژرمانیم نوع p در پولک تولید شده و آلیاژی از ژرمانیم و ایندیم (عمدتاً ایندیم) در پولک ته نشین می شود.

    پیوند p-n آلیاژ سیلیسیم را نیز می توان با همین روش و با بکار گیری آلومینیوم به عنوان پذیرنده، تشکیل داد.


    ژرمانیم نوع p تا دمای خیلی نزدیک به نقطه ذوب ژرمانیم گرم می شود، و پیرامون آن را عنصر بخشنده آنتیموان که گازی شکل است فرا می گیرد.

    اتم های آنتیمیوان در ژرمانیم پخش می شود تا یک ناحیه نوع n را تولید کند .

    اگر از یک بلور نوع n استفاده شود، گالیم گازی شکل به عنوان عنصر پذیرنده برای تهیه ناحیه نوع p در بلور بکار می رود.

    وقتی قرار است وسیله ای سیلیسیمی ساخته شود، از بور به عنوان عنصر پذیرنده و از فسفر به عنوان عنصر بخشنده استفاده می شود.
    دیود پیوندی شامل بلوری است که هم دارای ناحیه نوع p و هم ناحیه نوع n است.

    دیود های پیوندی یا از ژرمانیم ساخته می شود و یا از سیلیسیم، اولی دارای مزیت مقاومت مستقیم کمتر و دومی از مزیت داشتن ولتاژ شکست بیشتر و جریان اشباح معکوس کمتر برخوردار است.

    اتصال به پیوند با سیمهایی که به هر یک از این دو ناحیه وصل شده، برقرار می شود.

    معمولاً برای جلوگیری از نفوذ رطوبت کل وسیله را در محفظه ای بسته قرار می دهند.
    دیودهای اتصال- نقطه ای
    اصولاً دیود اتصال- نقطه ای از یک قرص ژرمانیم نوع n که نوک یا سبیلهایش، از سیم تنگستنی است و بر رویه آن فشرده می شود، تشکیل یافته است.

    اتصال به سبیل از طریق دو سیم مسی انجام می شود در خلال ساخت دیود اتصال- نقطه ای، یک تپ جریان از دیود عبور می کند و باعث می شود که در مساحتی از قرص و درست در مجاورت نوک سبیل یک ناحیه نوع p تشکیل شود.

    در این حالت پیوند n-p که ظرفیت در قرص ایجاد شده است.
    انواع دیودها و کاربرد آن ها
    پارامترهای مهم دیودهای نیم رسانا عبارتند از :
    1- مقاومت های a.c.

    مستقیم و معکوس.
    2- جریان مستقیم حداکثر.
    3- ظرفیت پیوند.
    4- فعالیت در ناحیه شکست.
    انواع اصلی دیود که در مدارهای الکترونیکی جدید بکار می روند، عبارتند از :
    1- دیودهای سیگنالی.
    2- دیودهای تون.
    3- دیودهای زنر.
    4- دیودهای با طرفیت متغیر (ورکتور).
    1- دیودهای سیگنالی
    اصطلاح دیود سیگنالی تمامی دیودهایی را در بر می گیرد که در مدارهایی که مقادیر اسمی زیاد جریان یا ولتاژ نیاز نیست بکار می روند.

    شرایط معمولی عبارتند از نسبت بزرگ مقاومت معکوس به مقاومت مستقیم و حداقل ظرفیت پیوند.

    برخی دیودهای موج
    اصطلاح دیود سیگنالی تمامی دیودهایی را در بر می گیرد که در مدارهایی که مقادیر اسمی زیاد جریان یا ولتاژ نیاز نیست بکار می روند.

    برخی دیودهای موجود در بازار از انواعی هستند که کاربردهای آن دارند، دیودهای دیگری از این نوع یافت می شوند که کاربردهای مداری خاص، مثلاً، آشکار ساز، امواج رادیویی، یا کلیدالکترونیکی در مدارهای منتقی بسیار مناسبند.

    حداکثر ولتاژ معکوس، یا ولتاژ معکوس قله، که معمولاً از دیود انتظار ارائه ان می رود معمولاً خیلی بالا نیست، حداکثر جریان مستقیم هم بالا نیست.

    بیشتر انواع دیود سیگنالی دارای ولتاژ معکوس قله ای در گستره v30 تا v 150 و حداکثر جریان مستقیم در حدود بین 40 وmA250 است.

    ولی اخیراً می توان به مقادیر بالاتری دست یافت.

    2- دیودهای توان دیودهای توان را غالباً برای تبدیل جریان متفاوب به جریان مستقیم، مانند یک سوسازها، بکار می برند.

    پارامترهای مهم دیود توان عبارتد از ولتاژ معکوس قله، حداکثر جریان مستقیم و نسبت مقاومت.

    ولتاژ معکوس قله احتمالاً دست در گستره V50 تا V1000 است با حداکثر جریان مستقیم که شاید A30 است.

    مقاومت مستقیم باید تا حد امکان پایین باشد تا از افت چشمگیری در ولتاژ دو سر دیود وقتی که جریان مستقیم زیادی جریان دارد جلوگیری می کند؛ معمولاً این مقاومت خیلی بیشتر از یک یا دو اهم نیست.

    3- دیودهای زنر جریان معکوس بزرگی که در هنکام در گذشتن ولتاژ دو سر دیود از ولتاژ شکست دیود، جاری می شود لزوماً نباید باعث آسب رساندن به وسیله شود.

    دیود زنر چنان ساخته شده است که به ان امکان می دهد در بدون خراب شدن، در ناحیه شکست کار کند، به شرط آن که جریان از طریق مقاومت خارجی به یک مقدار مجاز محدود شود.

    جریان زیاد در ولتاژ شکست یا دو عامل، به نام اثر زنر و اثر بهمنی، فراهم می آید در ولتاژهایی تا حدود V5 میدان الکتریکی نزدیک به پیوند چندان شدید است که می تواند الکترونها را از پیوند کوالانسی که اتم ها را کنار هم نگاه می دارد بیرون می کشد.

    زوجهای حفره- الکترونهای اضافی تولید می شوند و این زوج ها برای افزودن جریان معکوس در دسترسند.

    این اثر ر ا اثر زنر می نامند.

    اثر بهمنی وقتی پیش می آید که ولتاژ پیش ولت مخالف بیش از V5 یا در همین حدود باشد.

    سرعت حرکت حاملین بار از میان شبکه بلور چندان افزایش می یابد که این بارها به اندازه کافی دارای انرژی جنبشی شوند که اتم ها را در اثر برخورد یونیده کند اتمی را یونیده گویند که یکی از الکترونهای خود را ازدست داده باشد.

    بدین سان حاملین بار اضافی تولید شده از میان شبکه بلور عبور می کنند و ممکن است با سایر اتم ها نیز برخورد کرده و حتی از طریق یونش حاملین بیشتری ایجاد کنند.

    در این روش تعداد حاملین بار، و در نتیجه جریان معکوس، به سرعت افزایش می یابد.

    دیودهای زنر با ولتاژهای مرجع استاندارد شده متعددی قابل دسترسند.

    مثلاً، می توان بهدیود زنری با یک ولتاژ (شکست) مرجع V2/8 دست یافته.

    نام دیگر این وسیله دیود مرجع ولتاژ است.

    رایج ترین کاربرد دیود زنر در مدارهای پایدارنده ولتاژ است این نوع دیود را به عنوان مرجع ولتاژ نیز بکار می برند.

    ترانزیستور انواع ترانزیستور ترانزیستور وسیله ای نیمرساناست که می تواند سیگنال الکتریکی را تقویت کند، به عنوان کلید الکترونیکی عمل کند، و عملکردهای متعدددیگری داشته باشد .

    اساساً ترانزیستور شامل یک بلور ژرمانیم یا سیلیسیم و حاوی سه ناحیه مجزا است.

    این سه ناحیه ممکن است دو ناحیه نوع p باشد که یک ناحیه نوع n از آنها را جدا کرده است یا دو ناحیه نوع n که با یک ناحیه نوع p از هم جدا شده اند.

    نوع اول، ترانزیستور p-n-p و نوع دوم ترانزیستور نوع n-p-n است، کاربرد این هر دو نوع ترانزیستور متداول است، و گاهی هم هردو در یک مدار واحد مورد استفاده قرار می گیرند، ولی بحث ما در این فصل درباره ترانزیستور نوع p-n-p است.

    اما برای عملکرد مربوط به ترانزیستور n-p-n لازم است حفره را به جای الکترون، الکترون را به حای حفره، منفی را به جای مثبت و مثبت را به جای منفی بخوانیم.

    میانه سه ناحیه ترانزیستور بیس (پایه) و دو ناحیه بیرونی امیتر (گسیلنده) و کلکتور گردآور نامیده می شود.

    در اغلب ترانزیستورها ناحیه کلکتور از نظر فیزیکی بزرگتر از ناحیه امیتر ساخته می شود، چون انتظار می رود ناحیه توان بیشتری را تلف کند.

    نماد ترانزیستور p-n-p در شکل الف و نماد ترانزیستور در شکل ب نموده شده است.

    توجه کنید که سر پیکان سیم امیتر در دو شکل با جهتهای مختلفی نشان داده شده است، که در ترانزیستور n-p-n به خارج نشانه رفته اند.

    بزودی مشخص خواهد شد که سر پیکان جهت حرکت حفره ها را در داخل امیتر نشان می دهند.

    ترانزیستورها نسبت به لامپ های گرمایونی مزایای زیادی دارند؛ شاید مهم ترین امتیاز این است که ترانزیستورها نسبت به لامپ گرمایونی ، پیش از شروع به کار نیاز به منبع توانی بری گرم شدن ندارد.

    همین نکته باعث می شود که وسیله های ترانزیستوری بعد از وصل شدن کلید خیلی سریع تر از وسیله لامپی شروع به کار می کند.

    مصرف توان نیز در این حالت بسیار کمتر است و این موضوع مخصوصاً برای تجهیزات بزرگ مانند کامپیوتر از اهمیت زیادی برخوردار است.

    مزایای دیگر ترانزیستور، اندازه کوچک تر آنها، ولتاژ کارکرد بسیار پایین و پایداری بهترشان است.

    طرز کار ترانزیستور ترانزیستور p-n-p شامل دوپیوند p-n است و معمولاً طوری کا ر می کند که یک پیوند، پیوند امیتر- بیس با پیش ولت موافق، و دیگری، پیوند کلکتور - بیس، با پیش ولت مخالف است.

    این نکته را همراه با جهت جریانهای گوناگونی از ترانزیستور می گذرند.

    قرارداد متداولی که بنا بر آن جهت جریان مخالف جهت حرکت الکترونهاست به کار گرفته شده است.

    توجه کنید که، در ابندا، ولتاژ امیتر- بیس، Eeb ، صفر است بنابراین این جریان حامل بار اکثریتی که از پیوند امیتر- بیس می گذرد برابر است با جریان حامل باراقلیتی جاری جهت مخالف و جریان خالص پیوند صفر است.

    پیوند کلکتور- بیس به وسیله ولتاژ پیش ولت Eeb به پیش ولت معکوس تبدیل می شود و از این رو یک جریان حامل بار اقلیتی از سیم کلکتور می گذرد.

    این جریان، جریان اشباع معکوس است که در فصل پیش مورد بحث قرار گرفت ولی اکنون جریان نشتی کلکتور نامیده شده با نماد ICBO نموده می شود.

    اگر ولتاژ پیش ولت امیتر - بیس در جهت مثبت به اندازه چند دهم ولت افزایش یابد، پیوند امیتر- بیس با پیش ولت موافق بوده و یک جریان حامل بار اکثریتی جاری می شود.

    ای جریان شامل حرکت انقالی حفره ها از امیتر به بیس و گذر الکترونها از بیس به امیتر است.

    فقط جریان حفره ها برای کار ترانزیستور مفید است، که این نکته بزودی روشن خواهد شد، و بنابراین از طریق آلایش بیس، که خیلی دقیق تر از آلایشی است که در امیتر انجام می گیرد، این جریان را از جریان الکترون خیلی بیشتر می کنند.

    نسبت جریان حفره به کل جریان امیتر را نسبت تزریق امیتر یا کارایی امیتر می نامند، و با نماد نشان می دهند.

    معمولاً، تقرباً برابر 995/0 است و به این معناست که فقط 5/0% جریان امیتر شامل عبور الکترون از بیس به امیتر است.

    حفره ها فوراً ازپیوند امیتر- بیس می گذرند، و گفته می شود که به درون بیس گسیلیده یا تزریق شده اند، و به حاملین بار اقلیتی تبدیل شده و پخش شدن در عرض بیس به سوی پیوند بیس- کلکتور را آغاز می کنند.

    از آنجا که بیس بسیار باریک بوده و نیز رقیق آلاییده شده است، اکثر حفره های گسیلیده به پیوند کلکتور- بیس می رسند و بار الکترون آزاد بر سر راه خود باز ترکیب نمی شوند.

    حفره های گسیلیده با رسیدن به پیوند، جریان حامل بار اقلیتی را افزایش داده و از پیوند عبور کرده و مایه افزایش جریان کلکتور می شود.

    نسبت تعداد حفرههای وارده به کلکتور به تعداد حفره های گسیلیده عامل انتقال بیس، با نماد β، نامیده می شود.

    معمولاً: 995/0=β.

    1- جریان کلکتور کمتر از جریان امیتر است زیرا: (الف) بخشی از جریان امیتر شامل الکترونهایی است که در جریان کلکتور شرکت ندارند و (ب) تمام حفره های تزریق شده به بیس موفق نمی شوندبه کلکتور برسند.

    عامل (الف) با نسبت تزریق امیتر و عامل (ب) با ضریب انتقال بیس نموده می شود؛ بدین سان نسبت جریان کلکتور به جران امیتر برابر است با γβ با نشاندن مقادیر معمولی ذکر شده برای γ و β روشن می شود که معمولاً، جریان کلکتور تقریباً 99/0 برابر جریان امیتر است.

    2- جریان بیس کوچک بوده و سه مؤلفه دارد: (الف) یک جریان الکترون ورودی به بیس برای نشاندن حفرههای پخش به جای الکترونهای از دست رفته از طریق ترکیب مجدد، (ب) جریان الکترون حامل بار اکثریتی جاری شده از بیس به امیتر، و (ج) جریان نشتی کلکتور، ICBO.

    دو مؤلفه اول جریانهایی هستند که به خارج از بیس جاری شده و روی هم رفته از ICBO که به داخل بیس جاری می شود بزرگتر است، از اینرو کل جریان بیس، به خارج از بیس جاری می شود.

    کل جریان جاری شده به درون ترانزیستور باید برابر کل جریان خارج شده از آن باشد و از اینرو جریان امیتر، IE ، برابر است با مجموع جریانهای کلکتور و بیس، به ترتیب Ic و Ib .

    3- اگر جریان امیتر به هر وسیله ای تغییر کند، تعداد حفره های ورودی به کلکتور، و در نتیجه جریان کلکتور و نیز به همان ترتیب تغییر می کند.

    مقدار ولتاژ کلکتور- بیس، Vcb تأثیر نسبتاً ناچیزی بر جریان کلکتور دارد، که به زودی به این، نکته خواهیم رسید.

    بنابراین، کنترل جریان خروجی (کلکتور) را می توان از طریق جریان ورودی به امیتر انجام داد و این جریان نیز به نوبه خود، می تواند با تغییر ولتاژ پیش ولت اعمال شده به پیوند امیتر- بیس کنترل شود.

    افزایش ولتاژ پیش ولت (که رد جهت مستقیم است) ارتفاع سد پتانسیل را کاهش داده و جاری شدن جریان امیتر بیشتر را ممکن می کند؛ برعکس، کاهش ولتاژ پیش ولت جریان امیتر را کاهش می دهد.

    4- نسبت جریان خروجی ترانزیستور به جریان وروذی آن رد غیاب یک سیگنال a.c.

    بهره جریان D.C.

    ترانزیستور نامیده می شود.

    در بحث پیشین جریان خروجی جریان کلکتور، Ic ، و جریان ورودی جریان امیتر، Ie، بوده است.

    علامت منفی نشانه این است که جریانهای ورودی و خروجی در جهت های مخالف جاری می شوند.

    بنابر قرارداد، جریانی که به ترانزیستور وارد می شود مثبت و جریانی که از آن خارج می شود منفی است.

    از آنجا که کار ترانزیستور به حرکت حفرهها و الکترونها، هر دو، بستگی دارد در واقع باید این وسیله را «ترانزیستور دو قطبی» نامید.

    5- ترانزیستور را می توان به یکی از سه روشی در یک مدار وصل کردکه در هر حالت یک الکترود در ورودی و خروجی مشترک است.

    از این رو چنین اتصالی به نام الکترود مشترک توصیف می شود؛ مثلاً، در اتصال بیس- مشترک، بیس هم در ورودی و هم در خروجی مشترک است، سیگنال ورودی بین امیتر و بیس تغذیه می شود، و سیگنال خروجی بین کلکتور و بیس ظاهر می شود.

    در تمام اتصالات، پیوند بیس- امیتر همواره با پیش ولت موافق و پیوند کلکتور - بیس پیوسته با پیش ولت مخالف است.

    اتصال بیس- مشترک آرایشی اساسی اتصال (یا پیکر بندی) بیس- مشترک ترانزیستور دارای منبع تغذیه متناوب نیروی محرکه الکتریکی با (e.m.f.) برابر Es ولت مقدار مؤثر (r.m.s) و مقاومت داخلی Rs اهم است که به دو سر ورودی آن وصل شده است.

    منبع تغذیه متناوب با ولتاژ امیتر- بیس، Eeb به طور متوالی اتصال دارد و پیش ولت موافق اعمال شده به پیوند امیتر- بیس را تغییرمی دهد.

    در خلال نیم چرخه های مثبت e.m.f.

    منبع تغذیه، پیش ولت موافق اعمال شده به پیوند افزایش می یابد، سد پتانسیل کاهش یافته و جریان افزایشی امیتر در ترانزیستور جاری می شود.

    بر عکس، در خلال نیم چرخه های منفی جریان امیتر کاهش می یابد و به این ترتیب مایه تغییر جریان کلکتور بر طبق شکل موج منبع متناوب می شود.

    باتری پیش ولت کلکتور- بیس، Ecb ، مقاومت داخلی ناچیزی دارد و بنابراین ولتاژ کلکتور- بیس با تغییر جریان کلکتور ثابت می ماند.

    تا آنجا که به جریانهای متناوب مربوط است، مدار کلکتور- را مدار اتصال کوتاه می گویند.

    در یک مدار تقویت کننده بیس - مشترک یک پارامتر مهم بهره جریان مدر اتصال کوتاه ترانزیستور با نماد hfb است.

    بهره جریان مدار اتصال کوتاه به صورت نسبت تغییر جریان کلکتور به تغییر جریان امیتر تولید کننده ان تعریف می شود.

    بهره جریان مدار اتصال کوتاه به این جهت تصریح می شود که تحلیل نشان می دهد که بهره جریان تابعی است از مقدار مقاومتی که در مدار کلکتور قرار می گیرد.

    اما، برای مدار بیس- مشترک، اختلاف بین بهره جریان مدار اتصال کوتاه و بهره جریان برای هر مقاومت بار کلکتور ویژه به ازای تمام مقادیر مقاومت به کار رفته در مدارهای عملی بسیار کوچک بوده و در این کتاب از آن چشم می پوشیم.

    پیوندامیتر - بیس به وسیله باتری Ebe با پیش ولت موافق بوده و پیوند کلکتور - بیس از طریق پتانسیلی برابر (Ebe - Ece) با پیش ولت مخالف است.

    اما، چون ولتاژ باتری پیش ولت کلکتور - امیتر Ece بسیار بزرگتر از ولتاژ پیش ولت امیتر- بیس Ebe است، ولتاژ پیش ولت مخالف را می توان صرفاً برابر Ece ولت گرفت.

    وقتی که ترانزیستوری با این روش وصل شده باشد، جریان ورودی همان جریان بیس است و دیگر مانند پیش جریان امیتر نخواهد بود.

    در خلال نیم چخه های منفی ولتاژ سیگنال ورودی Es ، پیش ولت موافق پیوند امیتر- بیس افزایش می یابد، و بدینسان جریان امیتر، Ie، به اندازه Ic δ افزایش پیدا می کند.

    جریان کلکتور نیز به اندازه= hfbδIe Ic δ فزونی می گیرد.

    مشخصه های ایستایی ترانزیستور نمودارهای جریان- ولتاژ زیادی برای مطالعه طرز کار ترانزیستور در مدار در دسترسند.

    منحنیهای حاصل که منحنی های مشخه ایستایی نام دارند، اطلاعاتی را درباره مقدار جریان جاری به داخل یا به خارج از الکترود به ازای هر جریان مشخص جاری به داخل یا به خارج از الکترود دیگر و یا ولتاژ مشخصی بین دو الکترود بدست می دهند.

    برای هر مدار می توان 4 مجموعه منحنی مشخصه رسم کرد: (الف) مشخصه ورودی (ب) مشخصه انتقال، (ج) مشخصه خروجی، و (د) مشخصه متقابل.

    ولی، در این کتاب مشخصه مدار کلکتور - مشترک مورد بحث قرار نمی گیرد.

    مشخصه استایی بیس- مشترک روش تعیین مشخصه های ایستایی ترانزیستور اینست که ترانزیستور را به یک مدار مناسب ببندیم و سپس جریان ها و یا ولتاژهای مناسب را در چند مرحله جداگانه تغییر دهیم، و مقادیر متناظر سایر جریانها را در هر مرحله یادداشت کنیم.

    جریانهای کلکتور و بیس جاری به خارج از ترانزیستوراند و در این صورت بنا به تعریف منفی نشان داده می شوند؛ جریان امیتر جاری به داخل ترانزیستور نشان داده شده و باید مثبت گرفته شود.

    اگر قرار باشد مشخصه های ترانزیستور n-p-n را اندازه گیری کنیم، باید قطبیت دو باطری وارونه شود.

    مشخصه خروجی بیس - مشترک مشخصه خروجی نحوه تغییر جریان کلکتور را نسبت به تغییر ولتاژ کلکتور- بیس باثابت نگاه داشتن جریان امیتر نشان می دهد.

    جریان امیتر در یک مقدار کم مناسب نگاه داشته می شود و ولتاژ کلکتور بیس در چندین مرحله مجزا از صفر افزایش می یابد و در هر مرحله جریانی که از کلکتور می گذرد یادداشت می شود.

    آنگاه ولتاژ کلکتور- بیس را به صفر برمی گردانند و جریان امیتر را تا مقدار مناسب دیگری افزایش می دهند و همین روش کار را تکرار می کنند.

    در این روش می توان به یک خانواده کامل منحنی های مربوط به جریان کلکتور برحسب ولتاژ کلکتور- بیس دست یافت.

    مشخصه های خروجی ترانزیستور n-p-n شکل مشابهی دارند ولی در انها هم Ic و هم Vce مثبت است.

    عکس شیب مخصه خروجی ، مقاومت خروجی ترانزیستور را بدست می دهد، در صورتی که دو سر ورودی، در نقطه ای که اندازه گیری انجام می شود، به جریان متناوب مدار باز شده باشد.

    مقاومت خروجی مدار باز از خاصیت های ترانزیستور است: وقتی سیگنالی به دو سر خروجی اعمال می شودمقاومت خروجی به مقاومت منبع سیگنال وابسته است.

    چون منحنی ها در قسمت عمده طولشان خطی هستند، مقاومت خروجی نسبتاً ثابت است، و چون منحنی ها تقریباً موازی محور ولتاژ کلکتور، بیس هستند مقاومت خروجی خیلی زیاد، و از مرتبه kΩ 100 یا بیشتر است.

    می توان ملاحظه کرد که وقتی ولتاژ کلکتور- 20 به صفر کاهش داده شده است، هنوز مقداری از جریان کلکتور جاری است.

    دلیل این امر آن است که سد پتانسیل دو سر پیوند کلکتور- بیس باید قبل از اینکه جریان کلکتور متوقف شود، تا صفر کاهش پیدا کند (چرا که سد پتانسیل) به عبور حاملین بار اقلییتی کمک می کند).

    یکی دیگر از جنبه های مهم منحنی مشخصه، جریان کلکتور است که به ازای تمام مقادیر منحنی ولتاژ کلکتور - بیس وقتی جریان امیتر صفر باشد، جریان پیدا می کند.

    این جریان‌، جریان حامل بار اقلیتی است که پیوند کلکتور- بیس عبور می کند ( شبیه به جریان اشباع معکوس در یک دیود پیوندی ) و جریان نشستی کلکتور با نماد ICBO نام دارد.

    بهره جریان اتصال کوتاه hfb ترانزیستور را می توان از مشخصه خروجی براورد کرد زیرا تعیین تغییر جریان کلکتور حاصل از تغییر جریان امیتر، برای یک مقدار ثابت ولتاژ کلکتور - بیس، کار ساده ای است بدین سان، وقتی که جریان امیتر از 5mA تا 7mA تغییر می کند، جریان کلکتور از 4/9mA تا 6/8mAتغییر می یابد و از اینرو hfb برابر2/9/1 یا 95/0 می شود.

    از ‌آنجا که بهره جریان کمتر از واحد است و مقاومت ظاهری ورودی و خروجی خیلی باهم فرق دارند، اتصال بیس- مشترک برای مدارهای بسامد شنیداری به ندرت بکار می رود.

    مشخصه ایستایی امیتر- مشترک برای تعیین مشخصه ایستایی ترانزیستوری که به شکل امیتر- مشترک بسته شده است، ترانزیستور باید با امیتر- مشترک در مدار بسته شود؛ تنها تغییراتی که در مدار لازم است صورت گیرد حذف میلی آمپرسنج از مدار امیتر و قراردادن یک میکروآمپرسنج در مدار بیس است.

    الف- مشخصه ورودی امیتر- مشترک مشخصه وروذی چگونگی تغییرات جریان بیس نسبت به تغییرات ولتاژ بیس - امیتر را، در حالی که ولتاژ کلکتور امیتر ثابت است، نشان می دهد.

    روش تعیین مشخصه ورودی این است که ولتاژ کلکتور- ایمتر را در یک مقدار مناسب ثبت نگاه دارند و ولتاژ بیس- امیتر را در مرحله ای جداگانه افزایش دهند و رد هر مرحله جریان بیس را یادداشت کنند.

    هیمن روش مجدداً برای مقدار ثابت اما متفاوتی از ولتاژ کلکتور- امیتر Vce تکرار می شود، چون تغییر این ولتاژ بر منحنی مشخصه ورودی اثر می گذارد.

    ب- مشخصه انتقالی جریان امیتر - مشترک مشخصه انتقالی چگونگی تغییرات جریان کلکتور نسبت به تغییرات جریان بیس را، در حایل که ولتاژ کلکتور- امیتر ثابت نگاه داشته شده است، نشان می دهد.

    برای این اندازه گیری ولتاژ کلکتور- امیتر ثابت نگاه داشته شده و جریان بیس در چندین مرحله مجزا افزایش داده می شود و رد هر مرحله جریان ملکتور را یادداشت می کنند.

    سرانجام نموداری از تغییر جریان کلکتور بر حسب جریان بیس رسم می شود.

    از انجاکه مشخصه انتقالی از مقدار ولتاژ کلکتور - امیتور مستقل نیست، شیوه کار برای تعدادی از ولتاژهای مختلف کلکتور- امیتور تکرار می شود تا خانواده ای از منحنی ها به دست آید.

    ج- منحنی مشخصه خروجی امیتر- مشترک منحنی مشخصه خروجی، تغییراتی را که در جریان کلکتور که بر اثر تغییر ولتاژ کلکتور- امیتر، به ازای مقدار ثابت جریان بیس، اتفاق می افتد، نشان می دهد.

    جریان بیس روی مقدار مناسبی میزان می شود و ولتاژ کلکتور- امیتر در چند مرحله مجزا از صفر افزلیش داده می شود و انگاه جریان کلکتور را در هر مرحله یادداشت می کنند.

    سپس ولتاژ کلکتور- امیتر را به صفر بر می گردانند و جریان بیس به یک مقدار مناسب دیگر افزایش داده می شود، و آنگاه همین کار مجدداً تکرار می شود در این روش می توان به خانواده ای از منحنی ها دست یافت.

    برای منحنی مشخصه متناظر n-p-n باید قطبیتهای ICو Ibو Vce به مثبت برگردانده شوند.

    وقتی منحنی مشخصه نباشد، شیب آن مطابق با نقطه اندازه گیری تغییر می کند و بنابراین همیشه باید نقطه اندازه گیری ذکر شود.

    معمولاً جز مواردی که تصریح می شود، شیب خطی ترین بخش منحنی مشخصه اندازه گیری می شود.

    برای دستیابی به بالاترین میزان دقت نموهای داده شده به هر سوی نقطه انتخابی باید تا حد امکان کوچک گرفته شود هر چند در این فصل برای واضح تر کردن نمودارها این موضوع رعایت نشده است.

    می توان منحنی های مشخصه خروجی را نیز برای تعیین بهره جریان اتصال کوتاه، hfe، ترانزیستور بکار گرفت، زیرا برای مقدار ولتاژ کلکتور- امیتر Vce مشخصی، تغییر جریان در کلکتور، Icδ را بر اثر تغییر جریان بیس، Ibδ می توان با تصویر کردن از روی منحنیهای مناسب به دست آورد.

    بنابراین به ازای Vce=-47 تغییری در جریان بیس از A μ40-تا A μ60- ، یک تغییر جریان کلکتور از 12 تا mA9/2 در پی دارد.

    جریان نشتی کلکتور، ICBO، یک ترانزیستور بیس- مشترک نسبت به دما بسیار حساس است و تقریباً به ازای هر 12درجه سانیگراد افزایش دما در ترانزیستورهای سیلیسیمی و به ازای هر 8 درجه سانتیگراد افزایش دما در ترانزیستورهای ژرمانیم، دو برابر می شود.

    و اما، جریان نشتی ترانزیستور سیلیسیم در دمایی مشخص بسیار کمتر از جریان نشتی یک ترانزیستور ژرمانیم معادل آن در همان دماست.

    معمولاً، ICBO در C20 برای ترانزیستور ژرمانیم می تواند حدود A μ10باشو ولی برای تراتزیستئر سیلیسیم فقط حدود A n50 است.

    د- منحنی های مشخصه متقابل امیتر- مشترک منحنیهای مشخصه متقابل ترانزیستوری کهب ه صورت امیتر - مشترک بسته شده است، تغییرات جریان کلکتور را که رد اثر تغییرات ولتاژ بیس- امیتر، با ثابت نکاه داشتن ولتاژ کلکتور- امیتر پیش می آید نشان می دهد.

    شیب منحنی مشخصه متقابل رسانندگی مقابل ترانزیستور است.

    ساخت ترانزیستور از سال 1948 که ترانزیستور اختراع شد، رو شهای گوناگونی برای ساخت آن تکامل پیدا کرده است و توصیف اکثر آنها خارج از حوصله این کتاب است.

    از رایج ترین انواع مورد استفاده ترانزیستور دو نوع ترانزیستور پیوند آلیاژی و ترانزیستور تخت سیلیسیم است که فقط ساخت این دو نوع را معرفی خواهین کرد.

    ساخت ترانزیستور پیوند آلیاژی ژرمانیم این روش تعمیم روشی است که بیشتر برای دیود پیوند آلیاژی توصیف کردیم.

    ساخت ترانزیستور تخت سیلیسیم است.

    لامپ های گرمایونی لامپ گرمایونی شامل دو یا چند الکترود است که درون حبابی شیشه ای که بخش اعظم هوای داخل آن خارج شده است، قرار دارند.

    این لامپ در انواع متعدد و متفاوتی یافت می شود که کاربرد همه آنها متداول است اما در این فصل تنهاا به انواع ساده تر آن مانند دو قطبی (دیودس)، سه قطبی (تریود)، چهار قطبی (تترود) و پنج قطبی (پنتد) می پردازیم.

    در تمام انواع این لامپها یکی از الکترودها کاتود و دیگری آنود است و اصول اساسی کار به این ترتیب است که وقتی کاتود تا دمای مناسبی گرم می شود تعداد زیادی الکترون گسیل می کند.

    بخشی از این الکترونها را آنود گردآوری می کند و جریان آنود را تشکیل می دهد.

    الکترونهای گسیلیده، در خلال گذارشان از کاتود به آنود، می توانند از میان یک، دو، یا سه شبکه بسته به نوع لامپ عبور کنند و پتانسیل اعمال شده به این شبکه ها می تواند جریان الکترونها و در نتیجه جریان آنود را کنترل کند.

    گسیل گرمایونی در دمای معمولی الکترونهای فلز می توانند به طور تصادفی در ساختار اتمی فلز در هر سو حرکت کنندس، و برخی از الکترونهای نزدیک به سطح فلز در هوای پیرامون پراکنده می شوند.

    فلزات معمولی در دمای اتاق تعداد زیادی از الکترونهای خود را از دست نمی دهند و برای جلوگیری از ترک دائمی الکترونها از سطح فلز باید نیرویی وجود داشته باشدس.

    به محض اینکه الکترونی فلز را ترک می کند، فلزیک بار منفی (بار الکترونی) از دست می دهد و این عمل معادل است با افزایش یک بار مثبت آن.

    این بار مثبت نیرویی به الکترون گسیلیده وارد می آورد که الکترون را به سوی فلز برمی گرداند، و برای اینکه الکترون بتواند بگریزد باید دارای مقدار کافی انرژی جنبشی باشد که بر این نیرو غالب آید.

    الکترونهای بسیار کمی هستند که در دمای معمولی این انرژی کافی را داشته باشند و تعداد الکترونهایی که می توانند از سطح فلز بگریزند بسیار اندک است.

    به منظور افزایش چشمگیر تعداد الکترونهایی که از فلز می گریزند باید به این الکترونها انرژی اضافی داده شود، و بهترین راه انجام این کار گرم کردن فلز است با افزایش دمای فلز، الکترونهای بیشتری انرژی کافی به دست می آورند که آنها را قادر می سازد به نیروی برگرداننده غلبه کنند و بتوانند از فلز بگریزند.

    در اغلب فلزات اگر مشخصات فلز تغییر نکند، گسیل الکترون کافی باید در دمای بالایی صورت گیرد.

    در عمل امکان انتخاب مواد کاتودی محدود است به تنگستن، تنگستن توریم دار و اندوده نیکلی با آمیزه اکسید باریم و اکسید استرونتیوم که ممکن است مقداری هم اکسید کلسیم به آن افزوده شود.همین که الکترونی از کاتود می گریزد دستخوش نیروییکند کننده که از جانب الکترونهای منفی باری که قبلاً گریخته اند وارد می آید، واقع می شود.

    الکترون با این نیرو کند می شود و ممکن است به کاتود برگردانده شود.

    همچنین این امکان وجود دارد که سرعت این الکترون گسیلیده بر اثر برخورد با مولکولی گازی کند شود ولی برای به حداقل رساندن این اثر کاتود را در یک حباب شیشه ای تخلیه شده قرار می دهند.

    بدین سان الکترونها همواره از سطح کاتود گرم گسیلیده می شوند و سپس در معرض نیروهایی واقع می شوند که می خواهند آنها را به کاتود برگردانند.

    اغلب الکترونهای گسیلیده قبل از برگشتن به کاتود تنها به فاصله کوتاهی از آن دور می شوند؛ این فاصله با سرعت گسیل الکترون متناسب است.

    بنابراین پیرامون کاتود را ابری از الکترونها فرا گرفته است، که برخی از آنها از کاتود دور می شوند و برخی به سوی آن می آیند.

    تنها الکترونهایی که برای غلبه بر نیروهای بازدارنده انرژی کافی دارند می توانند از مجاورت کاتود بگریزند.

    ابر الکترونی اطراف کاتود بار فضایی نامیده می شود.

    واضح است که بار فضایی منفی است.

بيان ساده شده نظريه نيمرسانا نيمرسانا ماده اي است که مقاومت ويژه آن خيلي کمتر از مقاومت ويژه عايق و در عين حال خيلي بيشتر از مقاومت ويژه رساناست، و مقاومت ويژه اش با افزايش دما کاستي مي پذيرد. مثلا، مقاومت ويژه مس 8-10اهم - متر کوا رتز1012 اهم - م

الگوي تدريس مبتني بر نظريه فرا شناخت Metacognition مقدمه: فرا شناخت عبارت است از آگاهي فرد بر نظام شناختي خود و کنترل و هدايت آن در ادبيات روان شناسي، شناخت را معمولا? مترادف با تفکر مي آورند. بنابراين، فراشناخت را مي توان آگاهي بر جريان تفکر و

بر اساس اين نظريه ناحيه اي که مي خواهد تحت پوشش شبکه موبايل قرار گيرد به نواحي جغرافيايي کوچکتر با شعاع 2 تا 50 کيلومتر تقسيم مي شود در هر سلول سيستم ها فرستنده گيرنده پوشش راديويي سلول را به عهده دارند . و کانالهاي راديويي با دامنه مختلف فرکانس د

منطق فازي: منطق به کار رفته در بيشتر آيات قرآن ابتدا به چند تعريف زير توجه کنيد. منطق کلاسيک: منطقي ست که در آن گزاره ها فقط ارزش راست يا دروغ دارند که آنرا منطق ? و ? مي نامند. منطق چند مقداره: منطقي که علاوه بر ? و ? چند مقدار ديگر را نيز اخ

اینشتین دو نظریه دارد. نسبیت خاص را در سن 25 سالگی بوجود آورد و ده سال بعد توانست نسبیت عام را مطرح کند. نسبیت خاص بطور خلاصه تنها نظریه ایست که در سرعتهای بالا (در شرایطی که سرعت در خلال حرکت تغییر نکند--سرعت ثابت) می‌توان به اعداد و محاسباتش اعتماد کرد. جهان ما جوریست که در سرعتهای بالا از قوانین عجیبی پیروی می‌کند که در زندگی ما قابل دیدن نیستند. مثلا وقتی جسمی با سرعت نزدیک ...

بیان مسئله : همه ما چه مرد و چه زن قطعا گاهگاهی با مساله وزن و تغییرات آن برخورد داشته ایم . و حتی به ویژه در دوره نوجوانی و جوانی در این باره متحمل هزینه های هنگفتی شده ایم . هر چند که مساله وزن ، چاقی و لاغری مساله ای تازه در جامعه بشری نیست اما تغییرات فرهنگی جدید ، رسانه ها ، مدها و… همگی سبب حساسیت مردم در این باره شده است . فرهنگ جدید با تاکیدی که برلاغری و زیبایی اندام ...

جی . رابرت . اوپنهایمر در کتاب علم و فرزانگی در رابطه با سرگذشت کوانتوم چنین می گوید : « شاید هرگز تمامی تاریخ این حادثه روایت نشود . برای عرضه کردن آن هنری به آن اندازه توانا لازم است که برای روایت کردن سرگذشت اودیپوس یا کرامول ضرورت داشته است ، ولی این حادثه در قلمروی چندان دور از تجربه های روزانه ی ما صورت پذیرفته است که کم تر احتمال آن می رود که شاعر یا مورخی از آن با خبر ...

در اين مقاله مي خواهيم به دو مبحث بزرگ از رياضيات گسسته با نامهاي ترکيبات و نظريه‌ي گراف بپردازيم که در اين دوران شاهد پيشرفت چشمگير آنها مي باشيم . اين دو مبحث بدليل آنکه داراي کاربرد وسيعي در علم کامپيوتر و برنامه سازي هاي کامپيوتري مي‌باشند حائ

این یاداشت می پردازد به برداشت از درآمد باقی مانده، که ممکن تعریف شود از مازاد سود که باقی مانده ها بعد از هزینه سرمایه (هزینه فرصت) جوابگو هست. در حالی که علت برداشت اثر گذشته 19 قرن، تحقیقات فرضی دقیق و عمیق و کاربردها فراوان در زندگی واقعی نسبتاً جدید هستند و شرکت در میان رشته ای از امور مالی و ریاضیات مالی شرکت حساب متصل دارد (1982،1981،peasenall،1989،1987،peccati، ...

نظریه سیستمها به مفهوم عام خود در واقع کاملترین و جدیدترین چارچوب فکری است که بشر امروزی در راه کشف حقایق و تمیز خطا از صواب برای خود ساخته است . این منطق محصول عمر انسان متمدن است که مرحله تکامل خود را از دوران قبل از میلاد شروع کرده است . اگر چه اصولاً پیشرفت نحوه تفکر : سیر تکاملی داشته است ، ولی به منظور توجیه موضوع از سه مرحله جهشی به ترتیب زیر می توان سخن به میان آورد : 1 ...

ثبت سفارش
تعداد
عنوان محصول