دانلود مقاله جبر

Word 141 KB 22601 22
مشخص نشده مشخص نشده ریاضیات - آمار
قیمت قدیم:۱۰,۱۵۰ تومان
قیمت: ۷,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • کوتاه شده تاریخ جبر و نمادهای حرفی
    جبر بعنوان دانش حل معادله ها پدید آمد . در مصر و بابل کهن و همچنین در دوران های جدیدتر در هند ، با مقدمه های جبر "آشنا بودند و با توجه به داده های مسأله ، می توانستند معادله را تشکیل دهند و برخی از گونه های آن را حل کنند . البته آنها از حرف برای نشان دادن داده ها و مجهول ها آگاهی نداشتند و نمی توانستند معادله ها را به صورت کلی خود تنظیم کنند . در دوران ریاضیات کاربردی ، عنصرهای جبری ، همچون ادامه دانش حساب تلقی می شد . با وجود این ، به ویژه بابلی ها تا مرز بالایی از جبر جلو رفته بودند و می توانستند مساله های عملی را که منجر به گونه هایی از معادله درجه دوم و در بعضی حالت ها ، حتی درجه سوم شود ، حل کنند .
    به واژه « جبر » برای نخستین بار در سده نهم میلادی و در کارهای محمد فرزند موسا مشهور به خوارزمی مجوسی ، برخورد می کنیم . خوارزمی کتاب « حساب جبر و مقابله » ر ابه تشکیل و حل معادله ها اختصاص داده است . او از شش نوع معادله صحبت می کند که یکی از آن ها ، معادله درجه اول و پنج گونه دیگر درجه دوم است
    ( در واقع معادله درجه اول را هم حالت خاصی از معادله درجه دوم ، وقتی که ضریب درجه دوم برابر صفر باشد ، می گیرد ) . « حساب جبر و مقابله » همه چیز ر ابا واژه ها بیان می کند و هیچ گونه نماد حرفی ندارد .
    اصطلاح های « جبر » به معنای « جبران کردن » ، و « مقابله » ( مقابل هم قرار دادن ) ، معرف دو عمل ساده جبری است ؛ به نحوی که همه جمله های سمت چپ و راست معادله ، مثبت یا با ضریب مثبت باشند . واژه « جبر » به همان معنایی آمده است که در این مصراع سعدی : « که جبر خاطر مسکین بلا بگرداند » و از نظر عمل های جبری ، به معنای انتقال جله منفی به طرف دیگر معادله است تا مثبت شود . اصطلاح « مقابله » هم به معنای مقابل قرار دادن جله ها در دو طرف برابر ی و حذف مقدارهای برابر از دو طرف است .
    به این ترتیب « جبر و مقابله » به معنای ساده کردن معادله و ساده کردن جمله های متشابه است . نمادهای امروزی به تدریج و در طول زمان به وجود آمد .
    « محمد کرجی » ریاضیدان ایرانی اول سده یازدهم میلادی ، برای نشان دادن مجهول نمادی را انتخاب کرد . معادله ها نزد ایرانی ها تا جایی رسید که « خیام » معادله های درجه سوم ر ابه یاری برش های مخروطی حل می کند . باید توجه داشت که ایرانیان به پیروی از یونانی ها ، از هندسه برای حل مساله های جبری کمک می گرفتند . خوارزمی مسله های خود را گاهی با شیوه جبری و گاهی با کمک هندسه حل می کند . ولی خیام برای حل معادله های درجه سهم ، تنها ار هندسه و برش مخروطی استفاده
    می کند تا سرانجام جمشید کاشانی راه حلی جبری برای معادله درجه سوم می یابد که جواب ر اتا هر درجه دقت به دست می دهد .
    ریاضیدانان ایرانی ، به معادله های بالاتر از درجه سوم اعتقادی نداشتند ؛ زیرا فضا را سه بعدی و a3 را حجم مکعبی به ضلع a می دانستند و چون در فضا بیش از سه بعد نداریم ، برای a4 و a5 و غیر آن معنایی قائل نبودند .
    نمادهای جبری برای اولین بار در اروپای سده های پانزده و شانزدهم برای مجهول و سپس برای عمل ها پدید آمد . خوارزمی برای مجهول از واژه « شیء » استفاده می کرد ؛ همین واژه بعدها در اروپا به « x » تبدیل شد و برای نشان دادن مجهول به کار رفت .
    نخستین کسی که از حرف های الفبای لاتین برای نامیدن مجهول استفاده کرد فرانسوا ویت بود . او برای مجهول ، حرف N ر ابه کار مب برد . سپس بیش از همه ریاضیدان آلمانی « لایب نیتس » ( 1646 – 1716 ) و ریاضیدان و فیزیکدان انگلیسی « نیوتون » و ریاضیدان فرانسوی « دکارت » ( 1596 – 1650 ) ، در شکل گیری نمادها نقش داشتند .
    در سده پانزدهم « رکورد » ریاضیدان انگلیسی ، نماد برابری را به صورت دو پاره خط راست موازی ( = ) انتخاب کرد . در این باره ، خود رکورد می نویسد : « هیچ چیز مثل دو پاره خط راست موازی ، نمی تواند مفهوم برابری را برساند . »

    تاریخ عددهای منفی
    مفهوم عددهای منفی به تقریب در سده اول پیش از میلاد ، به وسیله هندی ها پدید آمد ( آنها عدد منفی را ، یعنی عددی کهکمتر از صفر بود ، « وام یا قرض » می نامیدند و مقدار مثبت را « دارایی » ) . برخی ریاضیدانان ایرانی هم از این اصطلاح برای بیان عدد استفاده می کردند . ولی به طور کلی ، ریاضیدانان ایرانی تنها به جواب مثبت معادله توجه داشتند .
    ریاضیدانان اروپایی سد های شانزدهم و هفدهم ، اغلب به جواب منفی معادله ها بی توجه بودند ، به آنها اهمیت نمی دادند و آنها را جواب های « دروغ » و « بی معنا »
    می دانستند ( از جمله ، فرانسوا ویت ریاضیدان فرانسوی ) .
    عددهای منفی تنها وقتی مورد قبول عام قرار گرفتند که سرچشمه واقعی آنها پیداشد . ولی دانشمندان یکباره به این سرچشمه پی نبردند . برای رسیدن به این مرحله ، دشواری ها و موانع بسیاری وجود داشت .
    یکی از روش های تفسیر مقدارهای مثبت و منفی را ، هندی ها یافتند که بسیار هم طبیعی بود . آنها سرچشمه مقدارهای مثبت و منفی را در دارایی و قرض یافتند . آنها با آغاز از اینجا ، بدون این که این مطلب را از نظر علمی تجزیه و تحلیل کرده باشند ، عمل روی عددهای منفی را آغاز کردند . برای نمونه « براهما گوپتا » ( 598 –660 میلادی ) یکی از بزرگترین ریاضیدانان و اختر شناسان ، در کتاب اخترشناسی اختصاص دارد ) و در سال 628 میلادی نوشته شده است می گوید :
    « مجموع دو دارایی ، یک دارایی و مجموع دو قرض ، قرض است . مجموع دارایی و قرض ، تفاضل آنها و اگر برابر باشند صفر است . مجمووع صفر و دارایی ، دارایی ، و مجموع صفر و قرض ، قرض است . مجموع دو صفر ، برابر صفر است . »

اولين مطلب : تاريخ را معمولا غربي ها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراين نمي توان انتظار داشت نوادگان اروپائياني که سياهان آفريقا را در حد يک حيوان پائين آورده و آنها را به بردگي کشانده اند، آنها

جبر کوتاه شده تاريخ جبر و نمادهاي حرفي جبر بعنوان دانش حل معادله ها پديد آمد . در مصر و بابل کهن و همچنين در دوران هاي جديدتر در هند ، با مقدمه هاي جبر "آشنا بودند و با توجه به داده هاي مسأله ، مي توانستند معادله را تشکيل دهند و برخ

مقدمه: یک کشف بزرگ سبب حل شدن یک مسأله بزرگ می‌شود، ولی در حل هر مسئله حبه‌ای از اکتشاف وجود دارد. مسئله شخص ممکن است چندان پیچیده نباشد، ولی اگر کنجکاوی وی را برانگیزد و ملکه‌های اختراع و اکتشاف را در فرد به کار وادارد، و اگر آن را با وسایل و تدابیر خود حل کند ممکن است از تنش و شادمانی حاصل از پیروزی در اکتشاف شاد شود، چنین حال و تجربه‌ای در سالهای تجربه‌پذیری می‌تواند شوق و ...

تاريخچه ي رياضيات انسان اوليه نسبت به اعداد بيگانه بود و شمارش اشياء اطراف خود را به حسب غريزه يعني همانطور که مثلاً مرغ خانگي تعداد جوجه‌هايش را مي‌داند انجام مي‌داد. اما بزودي مجبور شد وسيله شمارش دقيقتري بوجود آورد. لذا، به کمک انگشتان دست دستگ

تاريخچه رياضي : سرگذشت رياضيات 1 : انسان اوليه نسبت به اعداد بيگانه بود و شمارش اشياء اطراف خود را به حسب غريزه يعني همانطور که مثلاً مرغ خانگي تعداد جوجه‌هايش را مي‌داند انجام مي‌داد. اما بزودي مجبور شد وسيله ش

انسان اوليه نسبت به اعداد بيگانه بود و شمارش اشياء اطراف خود را به حسب غريزه يعني همانطور که مثلاً مرغ خانگي تعداد جوجه‌هايش را مي‌داند انجام مي‌داد. اما بزودي مجبور شد وسيله شمارش دقيقتري بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماري پديد آورد ک

بخش شرقی امپراطوری روم همواره، چه از لحاظ اقتصادی و چه از نظر فرهنگی، پیشرفته ترین بخش آن امپراطوری بود. اقتصاد بخش غربی هرگز بر اساس آبیاری استوار نبود، کشاورزی بخش غربی به گونه ای گسترده بود که انگیزه ای برای مطالعه نجوم فراهم نمی آورد. در واقع غرب با اندکی نجوم، کمی حساب عملی، و کمی دانش اندازه گیری که تکافوی تجارت و مساحی را می کرد، از عهده کارهای خود به خوبی برمی آمد، اما ...

تاريخچه مختصر رياضيات اولين مطلب : تاريخ را معمولا غربيها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراين نمي توان انتظار داشت نوادگان اروپائياني که سياهان آفريقا را در حد يک حيوان پائين آورده و آنها را به

الف) تاريخچه ايده ي نمايش يک تابع برحسب مجموعه ي کاملي از توابع اولين بار توسط ژوزف فوريه، رياضيدان و فيزيکدان بين سال هاي ????-???? طي رساله اي در آکادمي علوم راجع به انتشار حرارت، براي نمايش توابع بکار گرفته شد. در واقع براي آنکه يک تابعf(x

ژوزف لويي لاگرانژ در 25 ژانويه سال 1736 در تورينو ايتاليا متولد شد او که از بزرگترين رياضي دانان تمام ادوار تاريخ مي باشد هنگام تولد بيش از حد ضعيف و ناتوان بود و از 11 فرزند خانواده فقط او زنده مانده بود. زندگي لاگرانژ را مي توان به سه دوره تقسيم ک

ثبت سفارش
تعداد
عنوان محصول