دانلود تحقیق مدارهای الکتریکی

Word 286 KB 22683 36
مشخص نشده مشخص نشده الکترونیک - برق - مخابرات
قیمت قدیم:۲۴,۰۰۰ تومان
قیمت: ۱۹,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • در حال حاضر الکترونیک کلید فتح شگفتیهای جهان است و با تمام علوم و فنون موجود به نحوی پیوند خورده است .

    از وسائل ساده خانگی تا پیچیده ترین تکنیک های فضایی همه جا صحبت از تکنولوژی فراگیر الکترونیکی است و امروز صنعت مدرن بدون الکترونیک و تکنولوژی های وابسته به آن عملا مطرود و از کار افتاده است
    پیشرفت علم الکترونیک و وسعت حوزه عملکرد آن امروز بر همگان روشن است.

    علاوه بر وسائل الکترونیکی از جمله دستگاههای مخابراتی مثل رادیو ،تلویزیون ، ضبط صوت و تصویر ،انواع وسائل پزشکی ، صنعتی ،نظامی ، در دیگر وسائل غیر الکترونیکی هم ، کمتر وسیله ای را می توان یافت که الکترونیک در آن دخالتی نکرده باشد.

    از جمله در اتومبیل و صنایع حمل و نقل ، وسائل خانگی مثل ماشین لباسشوئی ،جاروبرقی و امثال آن نقش الکترونیک بسیار فعال و جالب توجه شده است.


    با توجه به این مختصر می توان نتیجه گرفت که امروزه ، دیگر الکترونیک علم و یا تخصص ویژه افرا تحصیلکرده دانشگاهی و متخصصین این رشته نیست و بر همه افرادی که به نحوی با امور فنی درگیرند لازم است بفراخور حرفه خویش از این رشته اطلاعی داشته باشند.



    مهندسان الکترونیک با خلق وعملکرد سیستمهای بسیار متنوعی سر وکار دارند که به منظور برآوردن نیازها و خواسته های جامعه طراحی می شوند.

    مهندسان الکترونیک در ایجاد ماشینهایی که تواناییهای بشر را در زمینه جسمی یاری و در زمینه محاسباتی افزایش می دهند نقش مهمی دارند .

    بخشی از طراحی و ایجاد سیستمهای الکترونیکی به توانایی ساخت مدلهای ریاضی اجزا و مدارهای الکتریکی بستگی دارد .برخی از مباحث پایه الکترونیک عبارتند از:
    مدار های الکتریکی: المان های الکتریکی مقاومت خازن سلف ترانسفورماتور دیود ترانزیستور IC تقویت کننده های عملیاتی مبدلها مقاومت الکتریکی تقریبا تمام مدارهای الکترونیکی برای عملکرد صحیح به مقاومت احتیاج دارند.

    مقاومتها امکان کنترل جریان و یا ولتاژ ارائه شده را فراهم می کنند.

    به عبارت دیگر می توان گفت قطعه مقاومت، قطعه‌ای است که در موارد مختلفی از قبیل محدود کردن ولتاژ و جریان و همچنین تقسیم ولتاژ و جریان استفاده می‌شود.

    ساختار مقاومت مورد استفاده در تعیین مشخصه‌های الکتریکی آن مفید واقع می‌شود.

    در هر مداری باید موارد زیر را برای مقاومت ها مد نظر داشت: مقدار مقاومت توان قابل تحمل تلرانس ضریب حرارتی ایجاد نویز پایداری زمانی که جریان الکتریکی از داخل یک رسانا عبور می‌‌کند با مقاومتی مواجه می‌‌شود.

    رابطه مقاومت با جریان و ولتاژ از طریق قانون اهم بیان می‌‌شودکه یک رابطهٔ خطی است : V = RI R : مقاومت بر حسب اهم .

    V : ولتاژ بر حسب ولت .

    I : جریان عبوری بر حسب آمپر .

    البته باید توجه داشت که مقاومت وابسته به مدار نیست و فقط به جنس و شکل ماده بستگی دارد.

    قانون اهم را قانون مداری مقاومت می‌‌خوانند اما رابطه فیزیکی مقاومت به شکل زیر است: R=ρl/A که ρ مقاومت ویژه ماده، l، طول رسانا و A، سطح مقطع آن است.

    سلف سیم پیچ سیم پیچ به طور ساده یک سیم هادی معمولی است که پیچانده شده است .

    مقاومت اهمی سیم پیچ را در اغلب موارد می توان صفر فرض نمود و بنابر این با عبور جریان dc سیم پیچ مانند یک هادی عمل کرده و عکس العملی ندارد .

    (ولتاژ دو سر آن صفر است) اما چنانچه جریان عبوری بخواهد تغییر نماید .

    سیم پیچ با تغییر جریان مخالفت نموده و این مخالفت به صورت ایجاد ولتاژی به نام ولتاژ القائی بروز نماید.

    و اصولاَ این خاصیت خودالقائی سیم پیچ می نامیم.

    هرگاه از سیمی جریان عبور کند اطراف سیم میدان مغناطیسی ایجاد می شود .

    در سال 1824 دانشمندی به نام اورستد دریافت که هرگاه قطب نمائی به سیم حامل جریان نزدیک شود عقربه منحرف می شود .

    و اثبات این موضوع است که اطراف سیم حامل جریان میدان مغناطیسی وجود دارد .

    تجمع براده ها در نزدیکی سیم بیشتر بوده به این معنی که شدت میدان مغناطیسی ایجاد شده در نزدیکی سیم بیشتر است .

    و هر چه از سیم دورتر شویم میدان مغناطیسی ضعیف تر می شود.

    عمل موتوری در جلوی سیم حامل جریان میدان مغناطیسی جریان مزبور با میدان مغناطیسی دائم در خلاف جهت بوده و در پشت سیم میدان های مزبور هم جهت هستند بنابر این در پشت سیم یک میدان قوی و در جلوی سیم یک میدان ضعیف بوجود می آید .

    اختلاف شدت میدان در دو طرف سیم باعث می گردد تا بر سیم حامل جریان نیروئی به سمت بالا وارد شود .

    امتداد نیروی مزبور عمود بر صفحه ای است که امتداد جریان و میدان مغناطیسی دائم بوجود می آورند و جهت آن در جهتی است که سیم را از میدان قوی تر به سمت میدان ضعیف تر حرکت دهد ، تا تعادل در دو طرف سیم برقرار گردد.پدیده مزبور اساس کار همه موتورهای الکتریکی است که انرژی الکتریکی را به انرژی مکانیکی تبدیل می نماید.

    عمل ژنراتوری عکس پدیده مزبور یعنی موتوری عمل ژنراتوری است .

    به همان ترتیبی که بر سیم حامل جریان در یک میدان مغناطیسی نیرو وارد می شود .

    چنانچه یک سیم هادی را در یک میدان مغناطیسی به نحوی حرکت دهیم که خطوط قوای مغناطیسی را قطع نماید تولید جریان می شود که به آن جریان القائی گویند.

    شارژ و دشارژ همانند خازن سیم پیچ هم قابلیت شارژ و دشارژ دارد.

    با این فرق که انرژی در سیم پیچ به صورت الکترو مغناطیسی ذخیره می شود.

    در صورتی که انرژی ذخیره شده در خازن از نوع الکترواستاتیکی است.

    دیود: 1-نیمه هادی ها 2-پیوندP-N 3-کاربرد دیود: الف-یکسوساز نیم موج ب-یکسوساز تمام موج 4-انواع دیود نیمه هادی: ● دیود اتصال نقطه ای ● دیود زنر ●دیود خازنی (ورکتور) ●دیود تونلی ● دیود نوردهنده یا LED : 1-کاربردهایLED 2- دیود نورانی مادون قرمز IR خازن خازن‌ها انرژی الکتریکی را نگهداری می‌کنند و به همراه مقاومت‌ها، در مدارات تایمینگ استفاده می‌شوند.

    همچنین از خازن‌ها برای صاف کردن سطح تغییرات ولتاژ مستقیم استفاده می‌شود.

    از خازن‌ها در مدارات بعنوان فیلتر هم استفاده می‌شود.

    زیرا خازن‌ها به راحتی سیگنالهای غیر مستقیم AC را عبور می‌‌دهند ولی مانع عبور سیگنالهای مستقیم DC می‌شوند .

    ظرفیت ظرفیت معیاری برای اندازه گیری توانایی نگهداری انرژی الکتریکی است.

    ظرفیت زیاد بدین معنی است که خازن قادر به نگهداری انرژی الکتریکی بیشتری است.

    واحد اندازه گیری ظرفیت فاراد است.

    1 فاراد واحد بزرگی است و مشخص کننده ظرفیت بالا می‌‌باشد.

    بنابراین استفاده از واحدهای کوچکتر نیز در خازنها مرسوم است.

    میکروفاراد µF، نانوفاراد nF و پیکوفاراد pF واحدهای کوچکتر فاراد هستند.

    µ means 10-6 (millionth), so 1000000µF = 1F n means 10-9 (thousand-millionth), so 1000nF = 1µF p means 10-12 (million-millionth), so 1000pF = 1nF انواع خازن‌ها انواع مختلفی از خازن‌ها وجود دارند که می‌توان از دو نوع اصلی آنها، با پلاریته (قطب دار) و بدون پلاریته (بدون قطب) نام برد.

    خازنهای قطب دار خازن‌های الکترولیت در خازنهای الکترولیت قطب مثبت و منفی بر روی بدنه آنها مشخص شده و بر اساس قطب‌ها در مدارات مورد استفاده قرار می‌‌گیرند.

    دو نوع طراحی برای شکل این خازن‌ها وجود دارد.

    یکی شکل اَکسیل که در این نوع پایه‌های یکی در طرف راست و دیگری در طرف چپ قرار دارد و دیگری رادیال که در این نوع هر دو پایه خازن در یک طرف آن قرار دارد.

    در شکل نمونه‌ای از خازن اکسیل و رادیال نشان داده شده است .

    در خازن‌های الکترولیت ظرفیت آنها بصورت یک عدد بر روی بدنه شان نوشته شده است.

    همچنین ولتاژ تحمل خازن‌ها نیز بر روی بدنه آنها نوشته شده و هنگام انتخاب یک خازن باید این ولتاژ مد نظر قرار گیرد.

    این خازن‌ها آسیبی نمی‌بینند مگر اینکه با هویه داغ شوند .

    خازن‌های تانتالیوم خازن‌های تانتالیم هم از نوع قطب دار هستند و مانند خازنهای الکترولیت معمولاً ولتاژ کمی دارند.

    این خازن‌ها معمولاً در سایزهای کوچک و البته گران تهیه می‌شوند و بنابراین یک ظرفیت بالا را در سایزی کوچک ارایه می‌‌دهند.

    در خازنهای تانتالیوم جدید، ولتاژ و ظرفیت بر روی بدنه آنها نوشته شده ولی در انواع قدیمی از یک نوار رنگی استفاده می‌شود که مثلا دو خط دارد (برای دو رقم) و یک نقطه رنگی برای تعداد صفرها وجود دارد که ظرفیت بر حست میکروفاراد را مشخص می‌کنند.

    برای دو رقم اول کدهای استاندارد رنگی استفاده می‌شود ولی برای تعداد صفرها و محل رنگی، رنگ خاکستری به معنی × 0.01 و رنگ سفید به معنی × 0.1 است.

    نوار رنگی سوم نزدیک به انتها، ولتاژ را مشخص می‌کند بطوری که اگر این خط زرد باشد 3/6 ولت، مشکی 10 ولت، سبز 16 ولت، آبی 20 ولت، خاکستری 25 ولت و سفید 30 ولت را نشان می‌‌دهد.

    برای مثال رنگهای آبی - خاکستری و نقطه سیاه به معنی 68 میکروفاراد است.

    آبی - خاکستری و نقطه سفید به معنی 8/6 میکروفاراد است .

    خازنهای بدون قطب خازن‌های بدون قطب معمولا خازنهای با ظرفیت کم هستند و می‌توان آنها را از هر طرف در مدارات مورد استفاده قرار داد.

    این خازنها در برابر گرما تحمل بیشتری دارند و در ولتاژهای بالاتر مثلا 50 ولت، 250 ولت و ...

    عرضه می‌شوند.

    پیدا کردن ظرفیت این خازنها کمی مشکل است چون انواع زیادی از این نوع خازنها وجود دارد و سیستم‌های کد گذاری مختلفی برای آنها وجود دارد.

    در بسیاری از خازن‌ها با ظرفیت کم، ظرفیت بر روی خازن نوشته شده ولی هیچ واحد یا مضربی برای آن چاپ نشده و برای دانستن واحد باید به دانش خودتان رجوع کنید.

    برای مثال بر 1/0 به معنی 0.1µF یا 100 نانوفاراد است.

    گاهی اوقات بر روی این خازنها چنین نوشته می‌شود (4n7) به معنی 7/4 نانوفاراد.

    در خازن‌های کوچک چنانچه نوشتن بر روی آنها مشکل باشد از شماره‌های کد دار بر روی خازن‌ها استفاده می‌شود.

    در این موارد عدد اول و دوم را نوشته و سپس به تعداد عدد سوم در مقابل آن صفر قرار دهید تا ظرفیت بر حسب پیکوفاراد بدست اید.

    بطور مثال اگر بر روی خازنی عدد 102 چاپ شده باشد، ظرفیت برابر خواهد بود با 1000 پیکوفاراد یا 1 نانوفاراد .

    کد رنگی خازن ها در خازن‌های پلیستر برای سالهای زیادی از کدهای رنگی بر روی بدنه آنها استفاده می‌‌شد.

    در این کدها سه رنگ اول ظرفیت را نشان می‌‌دهند و رنگ چهارم تولرانس را نشان می‌‌دهد .

    برای مثال قهوه‌ای - مشکی - نارنجی به معنی 10000 پیکوفاراد یا 10 نانوفاراد است.

    خازن‌های پلیستر امروزه به وفور در مدارات الکترونیک مورد استفاده قرار می‌‌گیرند.

    این خازنها در برابر حرارت زیاد معیوب می‌شوند و بنابراین هنگام لحیمکاری باید به این نکته توجه داشت.

    ترتیب رنگی خازن‌ها به ترتیب از ۰ تا ۹ به صورت زیر است: سیاه، قهوه ای، قرمز، نارنجی، زرد، سبز، آبی، بنفش، خاکستری، سفید خازن‌ها با هر ظرفیتی وجود ندارند.

    بطور مثال خازن‌های 22 میکروفاراد یا 47 میکروفاراد وجود دارند ولی خازن‌های 25 میکروفاراد یا 117 میکروفاراد وجود ندارند.

    دلیل اینکار چنین است : فرض کنیم بخواهیم خازن‌ها را با اختلاف ظرفیت ده تا ده تا بسازیم.

    مثلاً 10 و 20 و 30 و.

    ..

    به همین ترتیب.

    در ابتدا خوب بنظر می‌‌رسد ولی وقتی که به ظرفیت مثلاً 1000 برسیم چه رخ می‌‌دهد ؟

    مثلاً 1000 و 1010 و 1020 و.

    که در اینصورت اختلاف بین خازن 1000 میکروفاراد با 1010 میکروفاراد بسیار کم است و فرقی با هم ندارند پس این مساله معقول بنظر نمی‌رسد.

    برای ساختن یک رنج محسوس از ارزش خازن‌ها، می‌توان برای اندازه ظرفیت از مضارب استاندارد 10 استفاده نمود.

    مثلاً 7/4 - 47 - 470 و.

    و یا 2/2 - 220 - 2200 و..

    .

    خازن‌های متغیر در مدارات تیونینگ رادیویی از این خازن‌ها استفاده می‌شود و به همین دلیل به این خازنها گاهی خازن تیونینگ هم اطلاق می‌شود.

    ظرفیت این خازن‌ها خیلی کم و در حدود 100 تا 500 پیکوفاراد است و بدلیل ظرفیت پایین در مدارات تایمینگ مورد استفاده قرار نمی‌گیرند.

    در مدارات تایمینگ از خازن‌های ثابت استفاده می‌شود و اگر نیاز باشد دوره تناوب را تغییر دهیم، این عمل بکمک مقاومت انجام می‌شود .

    خازن‌های تریمر خازن‌های تریمر خازن‌های متغییر کوچک و با ظرفیت بسیار پایین هستند.

    ظرفیت این خازن‌ها از حدود 1 تا 100 پیکوفاراد است و بیشتر در تیونرهای مدارات با فرکانس بالا مورد استفاده قرار می‌‌گیرند .

    ترانزیستور معرفی ترانزیستور را معمولا به عنوان یکی از قطعات الکترونیک می‌‌شناسند.

    ترانزیستور یکی از ادوات حالت جامد است که از مواد نیمه رسانایی مانند سیلیسیم (سیلیکان) ساخته می‌شود.

    کاربرد ترانزیستور هم در مدارات الکترونیک آنالوگ و هم در مدارات الکترونیک دیجیتال کاربردهای بسیار وسیعی دارد.

    در آنالوگ می‌توان از آن به عنوان تقویت کننده یا تنظیم کننده ولتاژ (رگولاتور) و ...

    استفاده کرد.

    کاربرد ترانزیستور در الکترونیک دیجیتال شامل مواردی مانند پیاده سازی مدار منطقی، حافظه، سوئیچ کردن و ...

    می‌شود.

    [عملکرد ترانزیستور از دیدگاه مداری یک عنصر سه‌پایه می‌‌باشد که با اعمال یک سیگنال به یکی از پایه‌های آن میزان جریان عبور کننده از دو پایه دیگر آن را می‌توان تنظیم کرد.

    برای عملکرد صحیح ترانزیستور در مدار باید توسط المان‌های دیگر مانند مقاومت‌ها و ...

    جریان‌ها و ولتاژهای لازم را برای آن فراهم کرد و یا اصطلاحاً آن را بایاس کرد.g انواع دو دسته مهم از ترانزیستورها BJT (ترانزیستور دوقطبی پیوندی) (Bypolar Junction Transistors) و FET (ترانزیستور اثر میدانی) (Field Effect Transistors) هستند.

    FET ‌ها نیز خود به دو دستهٔ Jfet‌ها (Junction Field Effect Transistors) و MOSFET‌ها (Metal Oxide SemiConductor Field Effect Transistor) تقسیم می‌شوند.

    ترانزیستور دوقطبی پیوندی در ترانزیستور دو قطبی پیوندی با اعمال یک جریان به پایه بیس جریان عبوری از دو پایه کلکتور و امیتر کنترل می‌شود.

    ترانزیستورهای دوقطبی پیوندی در دونوع npn و pnp ساخته می‌شوند.

    بسته به حالت بایاس این ترانزیستورها ممکن است در ناحیه قطع، فعال و یا اشباع کار کنند.

    سرعت بالای این ترانزیستورها و بعضی قابلت‌های دیگر باعث شده که هنوز هم از آنها در بعضی مدارات خاص استفاده شود.

    ترانزیستور اثر میدانی(JFET) در ترانزیستور اثر میدانی با اعمال یک ولتاژ به پایه گیت میزان جریان عبوری از دو پایه سورس و درین کنترل می‌شود.

    ترانزیستور اثر میدانی بر دو قسم است: نوع n یا N-Type و نوع p یا P-Type.

    از دیدگاهی دیگر این ترانزیستورها در دو نوع افزایشی و تخلیه‌ای ساخته می‌شوند.نواحی کار این ترانزستورها شامل "فعال" و "اشباع" و "ترایود" است این ترانزیستورها تقریبا هیچ استفاده‌ای ندارند چون جریان دهی آنها محدود است و به سختی مجتمع می‌شوند.

    ترانزیستور اثر میدانی(MOSFET) این ترانزیستورها نیز مانند Jfet‌ها عمل می‌کنند با این تفاوت که جریان ورودی گیت آنها صفر است.

    همچنین رابطه جریان با ولتاژ نیز متفاوت است.

    این ترانزیستورها دارای دو نوع PMOS و NMOS هستند که تکنولوژی استفاده از دو نوع آن در یک مدار تکنولوژی CMOS نام دارد.

    این ترانزیستورها امروزه بسیار کاربرد دارند زیرا براحتی مجتمع می‌شوند و فضای کمتری اشغال می‌کنند.

    همچنین مصرف توان بسیار ناچیزی دارند.

    به تکنولوژی‌هایی که از دو نوع ترانزیستورهای دوقطبی و Mosfet در آن واحد استفاده می‌کنند Bicmos می‌گویند البته نقطهٔ کار این ترنزیستورها نسبت به دما حساس است وتغییر می کند.بنابراین بیشتر در سوئیچینگ بکار می روند مدار های مجتمع آیا می‌دانید IC ( آی سی) چیست؟

    و چه انگیزه‌ای باعث اختراع IC شد؟

    حروف اختصاری IC از دو کلمه انگلیسی integrated circuit به معنی مدار مجتمع گرفته شده است.

    پیش از اخترا ع IC ،مدارهای الکترونیکی ازتعداد زیادی قطعه یا المان الکتریکی تشکیل می‌شدند.

    این مدارات فضای زیادی را اشغال می‌کردند و توان الکتریکی بالایی نیز مصرف می‌کردند.

    و این، امکان بوجود آمدن نقص و عیب در مدار را افزایش می‌داد.

    همچنین سرعت پایینی هم داشتند.

    IC ، تعداد زیادی عناصر الکتریکی را که بیشتر آنها ترانزیستور هستند، در یک فضای کوچک درون خود جای داده است و همین پدیده است که باعث شده امروزه دستگاه‌های الکترونیکی کاربرد چشمگیری در همه جا و در همه زمینه‌ها داشته باشند.

    آیا تا کنون کلمه مدارات مجتمع را شننیده اید؟

    آیا هیچ آگاهی در مورد آن دارید؟

    در این پست اطلاعاتی در این رابطه به شما عزیزان ارائه خواهیم داد.

    مدار های دیجیتال با مدارهای مجتمع ساخته می شوند.

    یک مدار مجتمع ( یا آی سی ) یک کریستال کوچک نیمه هادی به نام تراشه است.

    که قطعات الکترونیکی را برای گیت های دیجیتال در خود دارد.

    اتصالات داخل تراشه مدار مورد نیاز را به وجود می آورند.

    تراشه در داخل یک محفظه پلاستیک و یا سرامیک جاسازی می شود.

    و اتصالات آن با سیم های طلایی نازک به پایه های خارجی جوش داده می شود تا مدارات مجتمع به وجود آیند.

    تعداد پایه ها ممکن است از 14 پایه در بسته های کوچک تا 100 پایه یا بیشتر در بسته های بزرگتر تغییر کند.

    هر مدار مشترک یا آی سی دارای یک مشخصه عددی ست که روی سطح بسته بندی آن برای شناسایی چاپ میشود.

    هر سازنده یک کتابچه راهنما یا کاتالوگ با شرح دقیق و تمام اطلاعات لازم در باره آی سی های ساخت خود را چاپ می کند.

    باپیشرفت تکنولوژی مدار های مجتمع تعداد گیت هایی که می تووانست در یک تراشه جای گیرد به میزان قابل توجه ای افزایش یافت.

    تراشه هایی که دارای چند گیت داخلی بودند و آن دسته که چند صد گیت دارا بودند در بسته هایی با ظرفیت یا مقیاس کوچک متوسط یا بزرک جای داده شده اند.

    مدار های مجتمع با مقیاس کوچک (SSI) دارای چند گیت مستقل در یک بسته واحد هستند.

    ورودی ها و خروجی های گیت ها مستقیما به پایه های بسته متصل اند.

    تعداد گیت ها معمولا کمتر از 10 و محدود به تعداد پایه ها در آی سی می باشند.

    قطعات مجتمع با مقیاس متوسط (MSI) دارای تقریبا 10 الی 200 گیت در هر بسته می باشند.

    این وسیله ها معمولا توابع دیجیتال ساده همچون دیکدر ها - جمع کننده ها و ثبات ها را اجرا می نمایند.

    مدار ها یا وسایل مجتمع با مقیاس بزرگ (LSI) بین 200 تا چند هزار گیت در هر بسته دارند.

    این بسته ها سیستم های دیجیتالی همچون پردازنده ها- تراشه های حافظه و ماژول های قابل بر نامه ریزی را شامل می شوند.

    قطعات مجتمع با مقیاس بسیار بزرگ (VLSI) حاوی هزاران گیت در یک بسته اند.

    مثال هایی از این گروه عبارتند از آرایه های بزرگ حافظه/ تراشه های پیچیده ریز کامپیو تر ها.

    VLSI ها به دلیل کوچکی و ارزانی انقلابی در تکنولوژی ساجت سیستم ها کامپیو تری به وجود آورده و به طراحان امکان ساخت و ایجاد ساختار هایی را دادند که قبلا اقتصادی نبودند.

    مدار های مجتمع نه تنها بر اساس عملکرد منطقی شان طبقه بندی می شوند بلکه از نظر تکنولوژی خاص مدار هایی که به آن تعلق دارند نیز دسته بندی می گردند.

    تکنولوژی به کار رفته در مدار را خانواده منطقی دیجیتال می خوانند.

    هر خانواده منطقی مدار الکترونیکی پایه خاصی را داراست که مدار ها و و توابع دیجیتال پیچیده تر بر اساس آن تهیه می شوند.

    مدار پایه در هر تکنولوژی یک گیت NAND/NOR و یا معکوس کننده است.

    در نام گذاری تکنولوژی ار قطعات الکترونیکی به کار رفته در ساخت مدار پایه معمولا استفاده می شود.

    بسیاری از خانواده های مختلف منطقی به صورت مدار های مجنمع در سطح تجاری عرضه شده اند.

    متداول ترین خانواده ها در زیر معرفی شده اند: TTL-منطق ترانزیستور –ترانزیستور ECL-منطق کوپل امیتر MOS-منطق فلز- اکسید- نیمه هادی CMOS-منطق فلز - اکسید - نیمه هادی مکمل تقویت کننده های عملیاتی تقویت کننده های عملیاتی به اختصار آپ امپ نامیده می شو ند.و به صورت مدار مجتمع در دسترس می باشند.این تقویت کننده ها از پایداری بالایی برخوردارند.، و با اتصال ترکیب مناسبی از عناصر خارجی مثل مقاومت،خازن،دیود و غیره به آنها،می توان انواع عملیات خطی و غیر خطی را انجام داد.

    از ویژگیهای اختصاصی تقویت کننده های عملیا تی ورودی تفاضلی و بهره بسیار زیاد است.

    این المان الکترونیکی اختلاف میان ولتاژهای ورودی در پای های مثبت و منفی را در خروجی با تقویت بسیار با لایی آشکار می سازد.حتی اگر این اختلاف ولتاژ کوچک نیز باشد.،آنرا به سطح قابل قبولی از ولتاژ‌ در خروجی تبدیل می کند.به شکل مداری این المان در زیر توجه کنید.

    این المان همواره دارای دو پایه مثبت و منفی در ورودی،این دو پایه ورودی مستلزم یک پایه در خروجی هستند.

    پایه ورودی مثبت را در اصطلاح لاتین noninverting و پایه منفی را inverting می گویند.

    نحوه عملکرد op_amp این المان بسته به وضعیت پایه های ورودی و خروجی دارای شرایط و عملکرد متفاوتی خواهد شد که در زیر به توضیح راجب این وضعیت ها می پردازیم.

    اگر inverting > noninverting باشد.خروجی به سمت منفی VSS اشباع می شود.منظور از منفی VSS مقدار منفی ولتاژ تغذیه آیسی است.

    مثلا اگر ولتاژ ورودی 5 ولت باشد و ورودی پایه منفی دارای ولتاژی بزرگتر از ورودی پایه مثبت باشد.خروجی به سمت منفی 5 ولت به اشباع می رود.

    اگر inverting منظور از اختلاف ولتاژ ،اختلاف بین ورودی مثبت از منفی است.

    بدون قرار دادن فیدبک از خروجی به ورودی، ماکزیمم اشباع در خروجی با کمترین اختلاف ولتاژ‌ در پایه های مثبت و منفی ورودی بوجود می آید.در این حالت مدار شما بسیار نویز پذیر است.

    در حالت ایده آل منظور حالت غیر عملی است.،در این حالت op-amp ها دارای مقاومت ورودی بی نهایت تقویت سیگنال ورودی در خروجی به صورت بی نهایت و مقاومت خروجی صفر هستند.

    در حالت واقعی گین یا تقویت بین ولتاژ های مثبت و منفی ورودی محدود می شود.

    بین پایه های ورودی و خروجی آپ امپ جریانی وجود ندارد.و این تنها ولتاژ ورودی است که خروجی را کنترل می کند.

    استفاده از فیدبک در آپ امپ با استفاده از فیدبک می توانید میزان تقویت ولتاژ های ورودی در خروجی را تعیین کنید.فیدبک می تواند.،از خروجی به هر یک از پایه های مثبت و منفی صورت گیرد.در آپ امپ اغلب فیدبک از خروجی به پایه منفی صورت می گیرد این نوع فیدبک را فیدبک منفی یا negative feedback می نامند.

    با استفاده از فرمول زیر می توانید.

    میزان تقویت یا گین(gain) را در این نوع از فیدبک به راحتی محاسبه کنید.

    در فرمول فوق Rf همان مقاومت فیدبک است.که در شکل زیر با نام R2 و از خروجی به پایه منفی ورودی زده شده است.منظور از Rin نیز مقاومت ورودی است.،که در شکل زیر با نام R1 می باشد.

    بنابر فرمول فوق اگر Rf برابر صفر باشد دیگر تقو یتی وجود ندارد.،و GAIN برابر یک می شود.در این حالت ولتاژ خروجی برابر ولتاژ ‌ورودی است.در این وضعیت آپ امپ تنها به صورت یک بافر مجزا کننده یا ISOLATE کننده جریان ورودی از خروجی عمل می کند.شکل زیر نشان می دهد چگونه خروجی بدون استفاده از مقاومت به پایه منفی ورودی فیدبک زده شده است.

    آپ امپ در حالت مقایسه گری یا Comparator در این حالت کوچکترین اختلاف بین ولتاژ های ورودی تقویت شده و در خروجی نمایان می شود.

    در این وضعیت خروجی زمانی high یا سوییچ می شود.که مقدار ولتاژ‌ در پایه inverting یا منفی به سطح ولتاژ‌ در پایه noninverting یا مثبت برسد.این ولتاژ در شکل زیر برابر vref است.

    از این نوع مدار جهت مقایسه ولتاژ های ورودی به خصوص در سنسورها استفاده می شود.

    در این مدار به جای مقاومت R2 می توانید از پتانسیومتر جهت تعیین ولتاژ‌ Vref و تنظیم آن به صورت دلخواه استفاده کنید.

    تقویت کننده مستقیم (noninverting amplifier) در این حالت ورودی منفی یا inverting توسط مقاومت R1 زمین می شو د.و فیدک نیز از خروجی توسط مقاومت R2 به ورودی منفی فیدبک داده می شود.در این حالت خروجی کاملا هم فاز با ورودی خواهد بود.

    تغذیه Op-Amp در بعضی موارد Op-Amp ها نیاز به دو منبع تغذیه مثبت و منفی دارند.

    اگر ما مایل باشیم که تنها از خروجی مثبت آپ امپ استفاده کنیم.در واقع منظور ولتاژ های مثبت در خروجی است.در این حالت می بایست منفی Vss را به زمین متصل کنیم.ولتاژ‌ مثبت را تنها به پایه تغذیه مثبت وصل کنیم.

    در این حالت شما بایستی از دو باطری یا از یک منبع تغذیه دوتایی مثبت و منفی استفاده کنید.

    در لینک زیر می توانید.یک مدار ساده تغذیه دوبل را تجربه کنید.

    تغذیه دوبل 5 ولت نکاتی راجب به Op-Amp هیچگاه تغذیه مثبت و منفی آپ و امپ را به صورت معکوس وصل نکنید.،با این کار Op-Amp خواهد سوخت.

    تغذیه ورودی های مثبت و منفی می بایست.از مقادیر ورودی در پایه های inverting و noninverting بیشتر باشد.سیگنال های ورودی و خروجی را توسط خازنهای 1.0ufتا 0.1uf زمین کنید تا از تاثیر نویز در مدار خود جلوگیری کنید.

    در حالت ایده آل آپ امپ ها دارای مقاومت ورودی بالا و در نتیجه جریان ورودی در حد صفر و مقاومت خروجی صفر می باشند.همچنین در این حالت ولتاژ‌ در ورودی های مثبت و منفی با یکدیگر مساوی هستند.

    حالت های مختلف بستن Op-Amp ترانسفورماتور مقدمه قسمت اعظم انرژی الکتریکی مورد نیاز انسان در تمام کشورهای جهان ، توسط مراکز تولید مانند نیروگاههای بخاری ، آبی و هسته‌ای تولید می‌شود.

    این مراکز دارای توربینها و آلترناتیوهای سه فاز هستند و ولتاژی که بوسیله ژنراتورها تولید می‌شود، باید تا میزانی که مقرون به صرفه باشد جهت انتقال بالا برده شود.

    گاهی چندین مرکز تولید بوسیله شبکه‌ای به هم مرتبط می‌شوند تا انرژی الکتریکی مورد نیاز را بطور مداوم و به مقدار کافی در شهرها و نواحی مختلف توزیع کنند.

    در محلهای توزیع برای اینکه ولتاژ قابل استفاده برای مصارف عمومی و کارخانجات باشد، باید ولتاژ پایین آورده شود.

    این افزایش و کاهش ولتاژ توسط ترانسفورماتور انجام می‌شود.

    بدیهی است توزیع انرژی بین تمام مصرف کننده‌های یک شهر از مرکز توزیع اصلی امکانپذیر نیست و مستلزم هزینه و افت ولتاژ زیادی خواهد بود.

    لذا هر مرکز اصلی به چندین مرکز یا پست کوچکتر (پستهای داخل شهری) و هر پست نیز به چندین محل توزیع کوچکتر (پست منطقه‌ای) تقسیم می‌شود.

    هر کدام از این مراکز به نوبه خود از ترانسهای توزیع و تبدیل ولتاژ استفاده می‌کنند.

    بطور کلی در خانواده و توزیع انرژی الکتریکی ، ترانسفورماتورها از ارکان و اعضای اصلی هستند و اهمیت آنها کمتر از خطوط انتقال و یا مولدهای نیرو نیست.

    خوشبختانه به دلیل وجود حداقل وسایل دینامیکی در آنها کمتر با مشکل و آسیب پذیری روبرو هستند.

    مسلما‌ این به آن معنی نیست که می‌توان از توجه به حفاظتها و سرویس و نگهداری آنها غفلت کرد.

    در این مقاله نخست مختصری از تئوری و تعاریفی از انواع ترانسفورماتورها بیان می‌شود، سپس نقش ترانسفورماتورها در شبکه تولید و توزیع نیرو و در نهایت شرحی در مورد سرویس و تعمیر ترانسها ارائه می‌شود.

    تئوری و تعاریفی از ترانسفورماتورها ترانسفورماتورها به زبان ساده و شکل اولیه وسیله‌ای است که تشکیل شده از دو مجموعه سیم پیچ اولیه و ثانویه که در میدان مغناطیسی و اطراف ورقه‌هایی از آهن مخصوص به نام هسته ترانسفورماتور قرار می‌گیرند.

    مقره‌ها یا بوشینگها یا ایزولاتورها و بالاخره ظرف یا محفظه ترانسفورماتور.

    کار ترانسفورماتورها بر اساس انتقال انرژی الکتریکی از سیستمی با یک ولتاژ و جریان معین به سیستم دیگری با ولتاژ و جریان دیگر است.

    به عبارت دیگر ترانسفورماتور دستگاهی است استاتیکی که در یک میدان مغناطیسی جریان و فشار الکتریکی را بین دو سیم پیچ یا بیشتر با همان فرکانس و تغییر اندازه یکسان منتقل می‌کند.

    انواع ترانسفورماتورها سازندگان و استانداردها در کشورهای مختلف هر یک به نحوی ترانسفورماتورها را تقسیم بندی کرده و تعاریفی برای درجه بندی آنها ارائه داده‌اند.

    برخی ترانسها را بنا بر موارد و ترتیب بهره برداری آنها متفاوت شناخته‌اند، مانند ترانسهای انتقال قدرت ، اتو ترانس و یا ترانسهای تقویتی و گروهی از ترانسها را به غیر از ترانسفورماتور اینسترومنتی(ترانس جریان و ولتاژ) ، ترانس قدرت می‌نامند و اصطلاحا ترانس قدرت را آنهایی می‌دانند که در سمت ثانویه آنها فشار الکتریکی تولید می‌شود.

    این نوع تقسیم بندی در عمل دامنه وسیعی را در بر می‌گیرد که در یک طرف آن ترانسفورماتورهای کوچک و قابل حمل با ولتاژ ضعیف برای لامپهای دستی و مشابه آن قرار می‌گیرند و طرف دیگر شامل ترانسهای خیلی بزرگ برای تبدیل ولتاژ خروجی ژنراتور به ولتاژ شبکه و خطوط انتقال نیرو است.

    در بین این دو اندازه (حد متوسط) ترانسهای توزیع و یا انتقال در مؤسسات الکتریکی و ترانسهای تبدیل به ولتاژهای استاندارد قرار دارند.

    ترانسها اغلب به صورت هسته‌ای یا جداری طراحی می‌شوند.

    در نوع هسته‌ای در هر یک از سیم پیچها شامل نیمی از سیم پیچ فشار ضعیف و نیمی از سیم پیچ فشار قوی هستند و هر کدام روی یک بازوی هسته‌ای قرار دارند.

    در نوع جداری ، سیم پیچها روی یک هسته پیچیده شده‌اند و نصف مدار فلزی مغناطیسی از یک طرف و نصف دیگر از طرف هسته بسته می‌شود.

    در اکثر اوقات نوع جداری برای ولتاژ ضعیف و خروجی بزرگ و نوع هسته‌ای برای ولتاژ قوی و خروجی کوچک بکار می‌روند (بصورت سه فاز یا یک فاز ترانسهای تغذیه و قدرت مانند ترانس اصلی نیروگاه ترانس توزیع و اتو ترانسفورماتور ، ترانسفورماتورهای قدرت معمولا سه فاز هستند، اما گاهی ممکن است در قدرتهای بالا به دلیل حجم و وزن زیاد و مشکل حمل و نقل از سه عدد ترانس تک فاز استفاده کنند.

    ترانسهای صنعتی مانند ترانسهای جوشکاری ، ترانسهای راه اندازی و ترانسهای مبدل ترانس برای سیستمهای کشش و جذب که در راه آهن و قطارهای الکتریکی بکار می‌رود.

    ترانسهای مخصوص آزمایش ،‌ اندازه گیری ، حفاظت مصارف الکتریکی و غیره منابع : http://fa.wikipedia.org/wiki http://daneshnameh.roshd.ir/mavara/mavara- http://www.govashir.com/electronic/archives/000741 www.amirpar.persianblog.com//:http عنوانمدار های الکتریکیمقاومت الکتریکیسلف سیم پیچدیودخازنترانزیستورمدار های مجتمعتقویت کننده های عملیاتیترانسفورماتورمنابع

  • مدار های الکتریکی
    مقاومت الکتریکی
    سلف سیم پیچ
    دیود
    خازن
    ترانزیستور
    مدار های مجتمع
    تقویت کننده های عملیاتی
    ترانسفورماتور
    منابع

ترانسفورماتور مقدمه امروزه با توسعه روز افزوني که در طي چند دهه اخير در سطح زندگي مردم کشورمان مشاهده مي شود استفاده از برق وسايل برقي شتاب و گسترش رو افزوني يافته به گونه اي که بيش از 60% مردم کشورمان حداقل از يکي وسايل برقي خانگي استفاده

منابع تغذيه : از بدو اختراع الکتريسته و توليد وسائل برقي اولين نياز منبع تغذيه وسائل برقي بود که اين وظيفه را ژنراتورها يا پيل هاي الکتريکي انجام مي دادند .با شروع عمر الکترونيک نياز به منابع تغذيه تفاوتهاي بسياري را به وجود آورد اولا جريان مصرفي

الکترونيک مطالعه و استفاده از وسائل الکتريکي اي مي باشد که با کنترل جريان الکترون ها يا ذرات باردار الکتريکي ديگر در اسبابي مانند لامپ خلا و نيمه هادي ها کار مي کنند. مطالعه محض چنين وسائلي ، شاخه اي از فيزيک است، حال آن که طراحي و ساخت مدارهاي الکت

الکترونیک مطالعه و استفاده از وسائل الکتریکی ای می باشد که با کنترل جریان الکترون ها یا ذرات باردار الکتریکی دیگر در اسبابی مانند لامپ خلا و نیمه هادی ها کار می کنند. مطالعه محض چنین وسائلی ، شاخه ای از فیزیک است، حال آن که طراحی و ساخت مدار های الکتریکی جزئی از رشته های مهندسی برق، الکترونیک و کامپیوتر می باشد. سالهاست که واژه" الکترونیک" به طور مکرر در میان مردم استفاده می شود ...

مقدمه : در اکثر آزمايشگاه هاي برق از منابع تغذيه براي تغذيه مدار هاي مختلف الکترونيکي آنالوگ و ديجيتال استفاده مي شود . تنظيم کننده هاي ولتاژ در اين سيستم ها نقش مهمي را برعهده دارند زيرا مقدار ولتاژ مورد نياز براي مدارها را بدون افت و خيز و تق

این محصول وسیله ای است برای تثبیت ولتاژ ، که جهت تثبیت ولتاژ تا قدرت 2KWبه کار برده می شود این محصول به صورت سه مرحله ای ولتاژ را تثبیت می کند و در تمام این مراحل به صورت اتوماتیک صورت می گیرد در ساختار این محصول دو قسمت کلی وجود دارد ؛ اول قسمت ترانسفور ماتوری که اساس این محصول به شمار می آید و دوم قسمت الکترونیکی که مکمل قسمت اول بشمار می آید در ساخت قسمت های ترانسفورماتوری به ...

پیشگفتار در این تحقیق آشنایی مختصری با نرم افزارPSPICE پیدا می کنیم و چگونگی توصیف مدار درآن را نشان خواهیم داد . هدف از گردآوری این مطالب ، کمک به خواننده برای شروع کار با PSPICE ، ضمن معرفی قابلیت های شاخص و منحصر به فرد این نرم افزار است ، اما جانشین کافی برای مراجعه به کتاب ها و راهنماهای PSPICE نیست، کتاب هایی که عناوین برخی از آن ها در بخش مراجع آمده است .در این راستا سعی ...

ترانزیستور چگونه کار می کند اعمال ولتاژ با پلاریته موافق باعث عبور جریان از یک پیوند PN می شود و چنانچه پلاریته ولتاژتغییر کند جریانی از مدار عبور نخواهد کرد. اگر ساده بخواهیم به موضوع نگاه کنیم عملکرد یک ترانزیستور را می توان تقویت جریان دانست. مدار منطقی کوچکی را در نظر بگیرید که تحت شرایط خاص در خروجی خود جریان بسیار کمی را ایجاد می کند. شما بوسیله یک ترانزیستور می توانید این ...

در مطلب قبل راجع به دیود های زنر و سیگنال صحبت کردیم و ضمن آوردن مثال، توضیح دادیم که این دیودها چگونه کار میکنند. حال در ادامه این مجموعه مطالب ابتدا به تشریح مختصر دیود های یکسو کننده میپردازیم. دیود های یکسوساز عموما" در مدارهای جریان متناوب بکار برده می شوند تا با کمک آنها بتوان جریان متناوب (AC) را به مستقیم (DC) تبدیل کرد. این عملیات یکسو سازی یا Rectification نامیده می ...

مقدمه بعضی از تجهیزات الکترونیکی نیاز به منابع تغذیه با ولتاژ و جریان بالا دارند. بدین منظور باید ولتاژ AC شهر توسط ترانسفورماتور کاهنده به ولتاژ پایینتر تبدیل و سپس یکسوسازی شده و به وسیله خازن و سلف صاف و DC شود. تا سال 1972 ، منابع تغذیه خطی برای بیشتر دستگاههای الکترونیکی مناسب بودند. اما با توسعه کاربرد مدارهای مجتمع ، لازم شد که خروجی این مدارها در برابر تغییرات جریان و یا ...

شرح کلی مدار امروز می خواهم به ذکر یک نمونه عملی از منابع تغذیه سوئیچینگ بپردازم تا با بررسی مدار آن، عملکرد این سیستم برای شما بیشتر روشن شود. حال با توجه به مدار به شرح اجزاء مختلف آن خواهم پرداخت. مداری را که به عنوان یک مثال عملی مشاهده می نمایید، مدار یک منبع تغذیه سوئیچینگ 200 وات ATX متعلق به کامپیوتر شخصی است که توسط شرکت TDK طراحی و ساخته شده است. در این منبع تغذیه ...

ثبت سفارش
تعداد
عنوان محصول