بیشتر مردم نمیدانند که در حدود یک سده و نیم پیش انقلابی در زمینه هندسه روی داد که از لحاظ علمی به عمق انقلاب کوپرنیکی در نجوم، و از جنبه نتایج فسلفی به اهمیت نگره تکامل داروین بود. کاکستر ، هندسهدان کانادایی مینویسد: «تأثیر کشف هندسه هذلولوی در تصوری که از حقیقت و واقعیت داریم آنچنان عمیق بوده است که بدشواری میتوانیم تصور کنیم که امکان وجود هندسهای غیر از هندسه اقلیدسی تا چه اندازه در سال 1820 تکان دهنده جلوه کرده است.» اما همه ما امورزه نام هندسه فضا – زمان نگره نسبیت اینشتاین را شنیدهایم. «در واقع، هندسته پیوستار فضا – زمان به حدی به هندسه تا اقلیدسی وابسته است که آگاهی از این هندسهها شرط لازم برای درک کامل جهانشناسی نسبیت است.»
هندسه اقلیدسی، همان هندسهای که شما در دبیرستان خواندهاید، هندسهای است که بیشتر برای تجسم جهان مادی به کار میبریم. این هندسه از کتابی به نام اصول به دست ما رسیده که توسط اقلیدس، ریاضیدان یونانی، در حدود 300 سال پیش از میلاد مسیح نگاشته شده است. تصوری که ما براساس این هندسه از جهان مادی پیدا کردهایم تا حد زیادی به توسط آیزک نیوتن در اواخر سده هفدهم ترسیم شده است.
هندسههایی که اقلیدسی نیستند از مطالعه عمیقتر موضوع توازی در هندسه اقلیدسی پیدا شدهاند. دو نیمخط موازی عمود بر پاره خط PQ را در نمودار زیر در نظر بگیرید:
در هندسه اقلیدسی فاصله (عمودی) بین دو نیمخط هنگامی که به سمت راست حرکت میکنیم همواره مساوی فاصله P تا Q باقی میماند؛ ولی در اوایل سده نوزدهم دو هندسه دیگر پیشنهاد شد. یکی هندسه هذلولوی (از کلمه یونانی هیپربالئین به معنی «افزایش یافتن») که در آن فاصله میان نیمخطها افزایش مییابد، دیگری هندسه بیضوی (از کلمه یونانی الیپن «کوتاه شدن») که در آن این فاصله رفته رفته کم میشود و سرانجام نیمخطها همدیگر را میبرند. این هندسههای نااقلیدسی بعدها به توسط ک.ف. گاوس و گ.ف.ب. ریمان در قالب هندسه کلیتری بسط داده شدند (همین هندسه کلیتر است که در نگره نسبیت عام اینشتاین مورد استفاده قرار گرفته است ).
در این کتاب ما به هندسههای هذلولوی و اقلیدسی خواهیم پرداخت. هندسه هذلولوی تنها به تغییر یکی از اصول اقلیدس نیاز دارد، و میتواند به همان آسانی هندسه دبیرستانی فهیمده شود. از سوی دیگر، هندسه بیضوی شامل مفهوم توپولوژیک تازه «سوناپذیری» است، زیرا همه نقاط صفحه بیضوی که بر روی یک خط نیستند در یک طرف آن خط قرار داردند. از این هندسه نمیشود به همان سهولت هندسه اقلیدسی صبحت کرد، زیرا به بسط قبلی هندسه تصویری نیاز دارد. بنابراین بحث در باره هندسه بیضوی را در یک ضمیمه کوتاهی انحام دادهام. (اشتباه نشود! منظو ما این نیست که ارزش هندسه بیضوی کمتر از ارزش هندسه هذلولوی است.) فهم هندسه ریمانی مستلزم درک کامل محاسبات دیفرانسیل و انتگرال، و لذا بیرون از ظرفیت این کتاب است (در ضمیمه «ب» مختصری راجع به آن بحض شده است).
فصل اول با تاریخچه مختصری در باب هندسه در دوران قدیم آغاز میشود، و به بیان اهمیت بسط روش بنداشتی توسط یونانیان ادامه مییابد. همچنین پنج اصل موضوع اقلیدس معرفی و به تلاش لژاندر برای اثبات اصل موضوع پنجم ختم میشود. برای پیدا کردن نقص برهان لژاندر (و برهانهای دیگر)، لازم است که مبانی هندسه دو باره دقیقاً مورد بررسی قرار گیرد. ولی، پیش از آنکه بتوانیم اساساً هندسهای بنا کنیم، باید به بعضی از اصول بنیادی منطق آگاهی داشته باشیم. این اصول در فصل دوم به گونهای غیر رسمی دوباره بررسی شدهاند. در این فصل عناصر مشکله یک برهان دقیق را از نظر میگذرانیم و بویژه به روش اثبات نامستقیم یا برهان خلف تکیه میکنیم. فصل دوم به مفهوم بسیار مهم الگو برای یک دستگاه بنداشت ختم میشود، که با الگوهای متناهی از بنداشتهای وقوع نقاط و خطوط در هندسه نشان داده شدهاند.