دانلود مقاله آشنایی با ماتریسها

Word 97 KB 24427 26
مشخص نشده مشخص نشده ریاضیات - آمار
قیمت قدیم:۱۶,۰۰۰ تومان
قیمت: ۱۲,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • آشنایی با ماتریسها
    مقدمه: در تاریع آمده است که اولین بار یک ریاضیدان انگلیسی تبار به نام کیلی ماتریس را در ریاضیات وارد کرد. با توجه به آنکه در آن زمان ریاضیدانان اغلب به دنبال مسائل کاربردی بودند، کسی توجهی به آن نکرد. اما بعدها ریاضیدانان دنباله ی کار را گرفتند تا به امروز رسید که بدون اغراق می توان گفت در هر علمی به گونه ای با ماتریس ها سروکار دارند. یکی از نقش های اصلی ماتریس ها آن است که آنها ابزار اساسی محاسبات عملی ریاضیات امروز هستند، درست همان نقشی که سابقاً اعداد بر عهده داشتند. از این نظر می توان گفت نقش امروز ماتریس ها همانند نقش دیروز اعداد است. البته، ماتریس ها به معنایی اعداد و بردارها را در بر دارند، بنابراین می توان آنها را تعمیمی از اعداد و بردارها در نظر گرفت. در ریاضیات کاربردی ماتریس ها از ابزار روز مره هستند، زیرا ماتریس ها با حل دستگاه معادلات خطی ارتباط تنگاتنگی دارند و برای حل ریاضی مسائل عملی، مناسبترین تکنیک، فرمول بندی مسئله و یا تقریب زدن جوابهای مسئله با دستگاه معادلات خطی است که در نتیجه ماتریس ها وارد کار می شوند. اما، مشکلی اصلی در ریاضیات کابردی این است که ماتریس های ایجاد شده، بسیار بزرگ هستند و مسئله اصلی در آنجا کار کردن با ماتریس های بزرگ است. از جنبه نظری، فیزیک امروزی که فیزیک کوانتوم است، بدون ماتریس ها نمی توانست به وجود آید. هایزنبرگ – اولین کسی که در فیزیک مفاهیم ماتریس ها را به کار برد- اعلام کرد «تنها ابزار ریاضی که من در مکانیک کوانتوم به آن احتیاج دارم ماتریس است.» بسیاری از جبرها مانند جبر اعداد مختلط و جبر بردارها را با ماتریس ها بسیار ساده می توان بیان کرد. بنابراین با مطالعه ماتریسها، در واقع یکی از مفیدترین و در عین حال جالبترین مباحث ریاضی مورد بررسی قرار می گیرد.
    تعریف ماتریس: اگر بخواهیم مانند کیلی، ماتریس را تعریف کنیم، باید گفت هر جدول مستطیلی که دارای تعداد سطر و ستون است و در هر خانه آن یک عدد وجود دارد یک ماتریس است. به عبارت دیگر هر آرایشی از اعداد مانند مثالهای زیر را ماتریس می گویند.
    اگر ماتریس را A بنامیم، در این صورت ماتریس ] 15و10 و 1-[ را سطر اول و ] 19و7 و5[ را سطر دوم و ، ، را به ترتیب ستون اول، ستون دوم، ستون سوم A گویند. ماتریس A را که دارای دو سطر و ستون است یک ماتریس دو در سه (2و3) می گویند. اصطلاحاً می گوییم A از مرتبه 2 در 3 است. (نوشته می شود 3×2). بنابراین ماتریس ] 7و5 و12[ B= یک ماتریس 4×1 و ماتریس C یک ماتریس 3×3 است.
    به اعداد یا اشیاء واقع در جدول ماتریس درایه های آن ماتریس می گویند. درایه های هر ماتریس در جا ومکان مشخصی قرار دارند. مثلاً در ماتریس درایه 3 در سطر اول و ستون اول است. همچنین درایه سطر دوم، ستون سوم عدد 6 است. به طور کلی اگر درایه های سطر I ام ستون jام را با aij نشان دهیم؛ داریم
    … و 5=12a 2=22a 3=11a
    به طور کلی یک ماتریس دلخواه 3×2 را بصورت زیر نمایش می دهیم:
    اغلب برای سهولت، به جای نمایش ماتریس به صورت فوق، آن را با نماد 3*2[aij]نشان می دهند که در آن aij را درایه یا عنصر عمومی ماتریس 3*2[aij] گویند. به طور کلی برای ساختن انواعی از ماتریس های دیگر می توانیم به جای آن که درایه های ماتریس را از اعداد حقیقی انتخاب کنیم، درایه ها را از اعداد مختلط عناصر یک میدان، توابع و یاحتی ماتریس ها انتخاب کنیم.
    در حالت کلی یک ماتریس m*n بصورت A=[aij]m*n عبارت است از:

    ماتریس های مربع: اگر در یک ماتریس تعداد سطرها و ستون ها مساوی باشد، آن را ماتریس مربع گویند. در این حالت اگر یک ماتریس مانند A دارای مرتبه ی n*n باشد، گوییم A یک ماتریس مربع مرتبه n است. مجموعه ماتریس های مربع مرتبه ی n را با یا نشان می دهند.
    درایه های 11a و 22a و… و anx یک ماتریس مربع مرتبه n باشد، مجموع درایه های قطر اصلی A را اثر ماتریس A می نامند و با نماد tr(A) نشان می دهند. بنابراین:
    در واقع اثر ماتریس، تابعی از مجموعه ماتریسهای مربع در مجموعه اعداد حقیقی است، یعنی
    مثال: اگر درایه های قطر اصلی A عبارتند از 4- و 6- بنابراین
    2=6+4-tr(A)
    ماتریس سطری: ماتریس هایی را که فقط یک سطر دارند ماتریس سطری یا بردار سطری می نامند. مثلاً ماتریس ی ماتریس سطری *n1 است.
    ماتریس ستونی: ماتریسی است که فقط دارای یک ستون باشد. هر ماتریس ستونی را بردار ستونی نیز می گویند. مثلاً ماتریس زیر یک ماتریس ستونی 1×m است.
    ماتریس صفر: ماتریسی است که همه درایه هایش صفر باشد. بنابراین ماتریس ماتریس صفر است. هرگاه:
    ماتریس صفر از مرتبه m*n را با نماد Qm*n نشان می دهند.
    مثال:
    اگر مرتبه ماتریس صفر، داده شده باشد و یا از طریق متن، مرتبه آن معلوم باشد، در اینصورت برای سهولت ماتریس صفر را با و یا حتی با O نشان می دهند.
    تساوی ماتریس ها: هرگاه در ریاضیات اشیا جدیدی معرفی شوند، باید مشخص شوند که چه وقت دوتای آنها با هم مساویند. مثلاً در مجموعه اعداد گویا دو عدد دو سوم و چهار ششم را، علیرغم اینکه یک شکل نیستند، مساوی می نامند. در مورد اعدادگ ویا، دو عدد را مساوی می گویند. هر گاه ad=bc تساوی ماتریسها نیز به صورت زیر تعریف می شود.
    تعریف: دو ماتریس و مساویند هرگاه هم مرتبه باشند و درایه های نظیر در دو ماتریس (یعنی درایه های هم موضع) مساوی باشند. به عبارت دیگر، دو ماتریس و مساویند هر گاه داشته باشیم:
    مثال: و تساوی A و B به این معناست که
    جمع ماتریس ها: مجموع دو ماتریس و ماتریسی است که با نماد A+B نشان می دهیم و به صورت زیر تعریفق می شود.
    توجه کنید که برای جمع دو ماتریس می بایست دو ماتریس هم مرتبه باشند. بنا به تعریف اگر A+B+C=[Cij] در اینصورت
    برای این که تعریف فوق روشن تر شود، شکل گسترده آن را در حالت ماتریس های 2×2 در زیر می آوریم

هدف «ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم» . دکتر دیبایی استاد ریاضی دانشگاه تربیت معلم تهران نیز در معرفی این علم می‌گوید: «علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده می‌کنیم . علوم ریاضیات این ...

هدف ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم» . دکتر دیبایی استاد ریاضی دانشگاه تربیت معلم تهران نیز در معرفی این علم می‌گوید: «علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده می‌کنیم . علوم ریاضیات این ...

مباحث مرتبط با مکانیک جامدات یا مکانیک مصالح که در ایران اغلب با نام مقاومت مصالح از آن یاد می شود شاخه ای از علم مکانیک است که با استفاده از روشهای تحلیلی به بررسی و تعیین مقاومت و صلبیت و نیز پایداری ارتجاعی اعضای باربر می پردازد.... یادداشتی در باب مقاومت مصالح (شرح دیدگاههای دکتر مسعود دهقانی در مبحث مکانیک مصالح) عرفان کسرایی e_kasraie@yahoo.com مباحث مرتبط با مکانیک جامدات ...

مقدمه توسعه و رشد سریع سرعت کامپیوترها و روشهای اجزای محدود در طی سی سال گذشته محدوده و پیچیدگی مسائل سازه ای قابل حل را افزایش داده است. روش اجزای محدود روش تحلیلی را فراهم کرده است که امکان تحلیل هندسه، شرایط مرزی و بارگذاری دلخواه را به وجود آورده است و قابل اعمال بر سازه‌های یک بعدی، دو بعدی و سه بعدی می‌باشد. در کاربرد این روش برای دینامیک سازه‌ها ویژگی غالب روش اجزای محدود ...

از زمانی که زیبایی ظاهری و آرامش، آسایش و ایمنی هر چه بیشتر محل زیست بشر و صد البته صرفه جویی در مصرف انرژی برای ساختمانها مد نظر قرار گرفت، ایجاد نماهای با مصالح و شیوه های اجرایی متفاوت و متنوع در دستور کار مالکان و سازندگان ساختمانها قرار گرفته‌است.البته از این نظر ایرانیان دارای سابقه طولانی و دیرینه در امر نما سازی برای ساختمانها هستند.و در طول تاریخ از گچبری و آهک بری برای ...

چکیده آبهای زیرزمینی به طور ذاتی در معرض آلودگیهای ناشی از فعالیتهای انسانی در طبیعت قرار دارند و جبران خسارتهای آن بسیار گران و اغلب غیر عملی است. از این رو، پیشگیری از آلودگی، در مدیریت کارآمد آبهای زیرزمینی نقش مهمی دارد. هدف از ارزیابی آسیب پذیری سفره های آبی، شناسایی مناطقی است که بیش از دیگر مناطق، در معرض آلودگیهای ناشی از فعالیتهای انسانی در مجاورت سطح زمین قرار دارند. ...

در گذشته تعداد زيادي مدلهاي مختلف با استفاده از مطالب مشاهده شده در جهت برآورد يا تنظيم ماتريسهاي OD پيشنهاد شده بود . در حاليکه اين مدلها از نظر فرمولاسيون رياضي متفاوت بودند و از نظر تفسير نيز متفاوت بودند . تمامي آنها در اين حقيقت که استفاده از آ

مقدمه در اوايل قرن بيستم به اين واقعيت پي برده شد که ماشين القايي بعد از قطع ولتاژ خط ممکن است در حالت تحريک باقي بماند ولي براي ايجاد چنين تحريکي شرايط خاصي مورد نياز بود. محققان بعد از پژوهش و تحقيق در يافتند که با اتصال خازنهايي به تر

مقدمه اي بر توليد : صنعت خودرو ازصنايعي مي باشد که در آ ن تقريبا تمامي روشهاي مهندسي بکار گرفته مي شود وحجم عظيمي از عمليات در آن صورت مي گيرد تا محصول مورد نظر ساخته شود. در کشورهاي پيشرفته اغلب کارخانجات خودرو سازي بسوي مکانيزه کردن عمل

کامپوزیت کامپوزیت به موادی اطلاق می شود که در ساختار آن بیش از یک جزء استفاده شده باشد. که در این مواد اجزاء مختلف خواص فیزیکی مکانیکی خود را حفظ می کنند. البته این طور هم می توان گفت که کامپوزیت ها موادی چند جزئی هستند که خواص آنها در مجموع از هرکدام از اجزاء بهتر است. ضمن آن که اجزای مختلف، کارایی یکدیگر را بهبود می‌بخشند. جملات بالا تعریف ساده ای از کامپوزیت ها بودند. این را ...

ثبت سفارش
تعداد
عنوان محصول