چدن خاکستری یک گروه وسیع از آلیاژهای ریختگی آهنی است که معمولا" بوسیله یک میکروساختار از گرافیت ورقه ای (flake graphite) در یک زمینه آهنی مشخص می شود. آن اساسا" یک آلیاژ Fe–C–Si شامل مقادیر کوچکی از عناصر آلیاژی دیگر و بیشترین آلیاژ ریختگی مورداستفاده و با تولید جهانی سالیانه 6 میلیون تن است که چندین برابر دیگر فلزات ریختگی است[1].
میکروساختار چدن خاکستری معمولا" شامل گرافیت ورقه ای و یک زمینه پرلیت و یا فریت است که خواص مکانیکی، قابلیت ماشینکاری و غیره به آن بستگی دارد. چدنهای خاکستری معمولی، زمینه پرلیتی و استحکام کششی در محدوده 140 تا 400 Mpa دارند. وسیله اصلی برای بهبود خواص مکانیکی، کاهش کربن معادل است که درصد گرافیت را کاهش و پرلیت را افزایش می دهد. جدول(1) انواع تجاری چدن خاکستری و خواص مکانیکی مربوط به آنها را نشان می دهد.
برای بهبود خواص چدن خاکستری، تحقیق بر روی گسترش میکروساختار آسفریت بیش از 40 سال انجام گرفته است[6-2]. یک بهبود مهم ویژه در خواص، نتیجه ای از گسترش چدن خاکستری آستمپر شده است[7-3]. چدنهای خاکستری آستمپر شده به مهندس چاره هایی با ترکیبات فرایندی/موادی معمولی پیشنهاد می دهد[7]. از طریق آستمپرینگ، زمینه فریتی یا پرلیتی، چدن خاکستری به یک ساختار سوزنی شامل 70 تا 80% فریت بینیتی بدون کاربید و آستنیت باقیمانده 20 تا 30% تغییر می یابد. چنین ساختاری به اصطلاح آسفریت است[6]. نشان داده شده است که چنین ساختار زمینه ای، یک چدن خاکستری با یک ترکیب منحصر بفرد از استحکام، مقاومت سایشی، جذب صدا و یا لرزش و تافنس شکست بالا را تولید می کند[6و7].
یک عملیات حرارتی معمولی آستمپرینگ چدن خاکستری، آستنیته کردن در دمای 840–900º C برای چند ساعت بر اساس ترکیب و ضخامت ریختگی و آستمپر کردن در 230–425º C است[6و7].
در حالی که این برنامه زمانی عملیات حرارتی تولید چدن خاکستری با یک محدوده عالی از خواص ، به انرژی قابل ملاحظه و فضای تولید نیاز دارد و ممکن است باعث آلودگی محیطی بعلاوه اکسیداسیون و ترک در اجزا شود. این مشکلات ، تولید گسترده چدن خاکستری آستمپر شده را محدود کرده اند، بنابراین تحقیق بر روی گسترش چدن خاکستری آسفریتی را بوسیله ریخته گری مستقیم وادار می کنند[5]. کار حاضر قصد دارد نشان دهد که چگونه تغییرات سیستماتیک در اضافه کردن آلیاژی به یک چدن خاکستری معمولی در طی ریخته گری می تواند یک آلیاژ با میکروساختار فریت بینیتی-آستنیتی (آسفریتی) با خواص مکانیکی قابل مقایسه با چدن خاکستری آستمپر شده را تولید کند.
جدول(1): ترکیب و خواص مکانیکی کلاسهای مختلف چدن خاکستری
Class Total carbon (wt.%) Total silicon (wt.%) Tensile strength (MPa) Transverse load on test bar (kg f) Hardness (HB)
20 3.40–3.60 2.30–2.50 152 839 56
25 - - 179 987 174
30 3.10–3.30 2.10–2.30 214 1145 210
35 - - 252 1293 212
2- تجربی
2-1- مواد و روش ریخته گری
هدف اصلی از کار حاضر تعیین تاثیر عناصر آلیاژی کلیدی بر توسعه میکروساختاری چدن خاکستری و اثرآن بر خواص مکانیکی بود. آزمایشات ریخته گری با استفاده از یک ترکیب آلیاژی اصلی حاصله از آمیژانها (جدول2) و بوسیله تغییر سیستماتیک عناصر آلیاژی که عمده آنها : Mo, Mn, Si, Cu بود، انجام گرفت. ترکیب اصلی نشان داده شده در جدول2 مربوط به آلیاژ کلاس 35 (جدول1) است. جدول2 همجنین نشان می دهد که چگونه Mo, Mn, Si, Cu بطور سیستماتیک از این ترکیب اصلی تغییر می یابند.
چدن خاکستری اصلی در یک کوره القائی در دمای 1500º C ذوب شد که آمیژانها به مذاب برای تولید ترکیب مطلوب، اضافه شدند. از طریق ترکیب کردن در دمای 1480-1520º C ، یک قسمت از مذاب با ترکیب مورد نیاز با یک ملاقه ریخته شد که با 5/0 درصد وزنی از آلیاژ 75Si–25Fe تلقیح شد. برای نمونه های متالوگرافی، قالبهای ساخته شده از ماسه سیلیکای خشک مخلوط با رزین به همراه فالبهایی برای نمونه های تست مکانیکی تولید شده با سیلیکای خشک اما مخلوط با خاک رس و با یک رنگ گرافیتی با زمینه آب، رنگ شد. هر دو نوع قالب با همان مشخصات سرد کردن در طی ریخته گری بعلاوه همان میکروساختار تولید شد[9]. دمای ریختگری 1380-1420º C بود. در ادامه ریخته گری، همه فالبهای نمونه ها در هوا با دمای اتاق، خنک شدند.
2-2- متالوگرافی و خواص مکانیکی
میلگردهای استوانه ای با 120 mm× 30mm Ø و 350mm×30mm Ø برای آزمایش متالوگرافی و تست مکانیکی ، به ترتیب، با استفاده دومی برای تعیین تنش شکست متقاطع و تست ضربه شارپی ریخته گری شدند[9]. نمونه ها برای تعیین تنش کششی نهایی (UTS) از نیمه پایین از هر نمونه شکسته متقاطع، ماشینکاری شدند. برای یک ترکیب مفروض، سه نمونه ریخته گری شدند و میکروساختار خواص مکانیکی تعیین شدند. با ادامه گرفتن ریخته گری، نمونه ها برای متالوگرافی نوری عمود بر محور طولی میلگردهای استوانه ای قرار گرفتند و با دنبال کردن خواص مکانیکی، سطوح شکست با استفاده از میکروسکوپ الکترونی Hitachi S4500 مورد آزمایش قرار گرفتند. اندازه گیری های کسر حجمی از میکرو اجزای زمینه (فریت، پرلیت، آسفریت، مارتنزیت و گرافیت) با استفاده از Adobe Photoshop 6.0 به همراه میکروسکوپ نوری Nikon Epiphot 200 با camera DXM 1200 Nikon digital انجام گرفت. برای هر نمونه، شش مورد اتفاقی با بزرگنمایی 100 با کسر حجمی از میکرو اجزای تعیین شده بوسیله متالوگرافی کمی، مورد تحلیل قرار گرفتند.