دانلود تحقیق فیزیک هسته ای

Word 157 KB 24594 10
مشخص نشده مشخص نشده محیط زیست - انرژی
قیمت قدیم:۱۲,۰۰۰ تومان
قیمت: ۷,۶۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • مقدمه
    درون هر اتم می‌توان سه ذره ریز پیدا کرد: پروتون، نوترون و الکترون.


    پروتونها در کنار هم قرار می‌گیرند و هسته اتم را تشکیل می‌دهند، در حالی که الکترونها به دور هسته می‌چرخند.

    پروتون بار الکتریکی مثبت و الکترون بار الکتریکی منفی دارد و از آنجا که بارهای مخالف ، یکدیگر را جذب می‌کنند، پروتون و الکترون هم یکدیگر را جذب می‌کنند و همین نیرو، سبب پایدار ماندن الکترونها در حرکت به دور هسته می‌گردد.

    در اغلب حالت‌ها تعداد پروتونها و الکترونهای درون اتم یکسان است، بنابراین اتم درحالت عادی و طبیعی خنثی است.نوترون، بار خنثی دارد و وظیفه اش در هسته، کنار هم نگاه داشتن پروتونهای هم بار است.


    اتمهای ناپایدار
    تا اوایل قرن بیستم، تصور می‌شد تمامی اتم‌ها پایدار هستند، اما با کشف خاصیت پرتوزایی اورانیوم توسط بکرل مشخص شد برخی عناصر خاص دارای ایزوتوپ های رادیواکتیو هستند و برخی دیگر، تمام ایزوتوپ هایشان رادیواکتیو است.

    رادیواکتیو بدان معنی است که هسته اتم از خود تشعشع ساطع می‌کند.


    هیدورژن ایزوتوپ های متعددی دارد و فقط یکی از آنها رادیو اکتیو است.

    هیدروژن طبیعی ،هیدروژن 2 یا دو تریوم است که یک پروتون و یک نوترون در هسته خود جای داده است ولی ایزوتوپ بعدی که تریتیوم خوانده می‌شود، ناپایدار است

    واپاشی رادیو اکتیو
    1- واپاشی آلفا2- واپاشی بتا3- شکافت خودبه خودی
    در این فرآیندها چهار نوع تابش رادیواکتیو مختلف تولید می‌شود:
    1- پرتو آلفا2- پرتو بتا3- پرتو گاما4- پرتوهای نوترون
    تابش های طبیعی خطرناک
    ذرات پر انرژی آلفا، بتا، نوترونها، پرتوهای گاما و پرتوهای کیهانی، همگی به تابش های یون ساز معروفند، بدین معنی که بر همکنش آنها با اتم‌ها منجر به جداسازی الکترون‌ها از لایه ظرفیتشان می‌شود.

    از دست دادن الکترونها، مشکلات زیادی از جمله مرگ سلول‌ها و جهش های ژنتیکی را برای موجودات زنده به دنبال دارد.

    جالب است بدانید جهش ژنتیکی عامل بروز سرطان است.


    ذ رات آلفا، اندازه بزرگتری دارند و از این رو توانایی نفوذ زیادی در مواد ندارند، مثلاً حتی نمی توانند از یک ورق کاغذ عبور کنند.

    از این رو تا زمانی که در خارج بدن هستند تأثیری روی افراد ندارند.

    ولی اگر مواد غذایی آلوده به مواد تابنده ذرات آلفا بخورید، این ذرات می‌توانند آسیب مختصری درون بدن ایجاد کنند.


    ذرات بتا توانایی نفوذ بیشتری دارند که البته آن هم خیلی زیاد نیست، ولی در صورت خورده شدن خطر بسیار بیشتری دارند.

    ذرات بتا را می‌توان با یک ورقه فویل آلومینویم یا پلکسی گلاس متوقف کرد.


    پرتوهای گاما همانند اشعه X فقط با لایه های ضخیم سربی متوقف می‌شوند.

    نوترونها هم به دلیلی بی یار بودن، قدرت نفوذ بسیار بالایی دارند و فقط با لایه های بسیار ضخیم بتن یا مایعاتی چون آب و نفت متوقف می‌شوند.

    پرتوهای گاما و پرتوهای نوترون به دلیل همین قدرت نفوذ بالا می‌توانند اثرات بسیار وخیمی بر سلول های موجودات زنده بگذارند، تأثیراتی که گاه تا چند نسل ادامه خواهد داشت..


    ساختار نیروگاه اتمی
    طی سال های گذشته اغلب کشورها به استفاده از این نوع انرژی هسته ای تمایل داشتند و حتی دولت ایران ۱۵ نیروگاه اتمی به کشورهای آمریکا، فرانسه و آلمان سفارش داده بود.

    ولی خوشبختانه بعد از وقوع دو حادثه مهم تری میل آیلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبیل (Tchernobyl) در روسیه در ۲۶ آوریل ۱۹۸۶، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتاً مجبور به تجدیدنظر در برنامه های اتمی خود کرد.



    نیروگاه اتمی در واقع یک بمب اتمی است که به کمک میله های مهارکننده و خروج دمای درونی به وسیله مواد خنک کننده مثل آب و گاز، تحت کنترل درآمده است.

    اگر روزی این میله ها و یا پمپ های انتقال دهنده مواد خنک کننده وظیفه خود را درست انجام ندهند، سوانح متعددی به وجود می آید و حتی ممکن است نیروگاه نیز منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی.

    یک نیروگاه اتمی متشکل از مواد مختلفی است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند.

    این مواد عبارت اند از:

    ۱- ماده سوخت متشکل از اورانیوم طبیعی، اورانیوم غنی شده، اورانیوم و پلوتونیم است:عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است.

    در این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ اورانیوم ۲۳۵ عمل شکست انجام می گیرد و انرژی فراوانی تولید می کند.

    بعد از ورود نوترون به درون هسته اتم، ناپایداری در هسته به وجود آمده و بعد از لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دوتکه شکست و تعدادی نوترون می شود.

    تعداد متوسط نوترون ها به ازای هر ۱۰۰ اتم شکسته شده ۲۴۷ عدد است و این نوترون ها اتم های دیگر را می شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به صورت زنجیره ای انجام می شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد.


    در واقع ورود نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با ۲۰۰ میلیون الکترون ولت است این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات است.

    که اگر به صورت زنجیره ای انجام شود، در کمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد کرد.


    اما اگر تعداد شکست ها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست، اتم بعدی شکست حاصل کند شرایط یک نیروگاه اتمی به وجود می آید.

    به عنوان مثال نیروگاهی که دارای ۱۰ تن اورانیوم طبیعی است قدرتی معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانیوم ۲۳۵ در روز در این نیروگاه شکسته می شود و همان طور که قبلاً گفته شد در اثر جذب نوترون به وسیله ایزوتوپ اورانیوم ۲۳۸ اورانیوم ۲۳۹ به وجود می آمد که بعد از دو بار انتشار پرتوهای بتا (یا الکترون) به پلوتونیم ۲۳۹ تبدیل می شود که خود مانند اورانیوم ۲۳۵ شکست پذیر است.

    در این عمل ۷۰ گرم پلوتونیم حاصل می شود.

    ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترون های موجود در نیروگاه زیاد باشند مقدار جذب به مراتب بیشتر از این خواهد بودو مقدار پلوتونیم های به وجود آمده از مقدار آنهایی که شکسته می شوند بیشتر خواهند بود.

    در چنین حالتی بعد از پیاده کردن میله های سوخت می توان پلوتونیم به وجود آمده را از اورانیوم و فرآورده های شکست را به کمک واکنش های شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد.



    ۲ - نرم کننده ها موادی هستند که برخورد نوترون های حاصل از شکست با آنها الزامی است و برای کم کردن انرژی این نوترون ها به کار می روند.

    زیرا احتمال واکنش شکست پی در پی به ازای نوترون های کم انرژی بیشتر می شود.

    آب سنگین (D2O) یا زغال سنگ (گرافیت) به عنوان نرم کننده نوترون به کار برده می شوند.



    ۳ - میله های مهارکننده: این میله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآکتور اتمی الزامی است و مانع افزایش ناگهانی تعداد نوترون ها در قلب رآکتور می شوند.

    اگر این میله ها کار اصلی خود را انجام ندهند، در زمانی کمتر از چند هزارم ثانیه قدرت رآکتور چند برابر شده و حالت انفجاری یا دیورژانس رآکتور پیش می آید.

    این میله ها می توانند از جنس عنصر کادمیم و یا بور باشند.



    ۴ - مواد خنک کننده یا انتقال دهنده انرژی حرارتی: این مواد انرژی حاصل از شکست اورانیوم را به خارج از رآکتور انتقال داده و توربین های مولد برق را به حرکت در می آورند و پس از خنک شدن مجدداً به داخل رآکتور برمی گردند.

    البته مواد در مدار بسته و محدودی عمل می کنند و با خارج از محیط رآکتور تماسی ندارند.

    این مواد می توانند گاز CO2 ، آب، آب سنگین، هلیم گازی و یا سدیم مذاب باشند.



    غنی سازی اورانیم
    سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانیوم ۲۳۸ به مقدار ۳/۹۹ درصد تشکیل شده است.

    سنگ معدن را ابتدا در اسید حل کرده و بعد از تخلیص فلز، اورانیوم را به صورت ترکیب با اتم فلئور (F) و به صورت مولکول اورانیوم هکزا فلوراید UF6 تبدیل می کنند که به حالت گازی است.

    سرعت متوسط مولکول های گازی با جرم مولکولی گاز نسبت عکس دارد این پدیده را گراهان در سال ۱۸۶۴ کشف کرد.

    از این پدیده که به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده می کنند.در عمل اورانیوم هکزا فلوراید طبیعی گازی شکل را از ستون هایی که جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور می دهند.

    منافذ موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتیمتر) باشد.

    ضریب جداسازی متناسب با اختلاف جرم مولکول ها است.روش غنی سازی اورانیوم تقریباً مطابق همین اصولی است که در اینجا گفته شد.

    با وجود این می توان به خوبی حدس زد که پرخرج ترین مرحله تهیه سوخت اتمی همین مرحله غنی سازی ایزوتوپ ها است زیرا از هر هزاران کیلو سنگ معدن اورانیوم ۱۴۰ کیلوگرم اورانیوم طبیعی به دست می آید که فقط یک کیلوگرم اورانیوم ۲۳۵ خالص در آن وجود دارد.

    برای تهیه و تغلیظ اورانیوم تا حد ۵ درصد حداقل ۲۰۰۰ برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پی درپی لازم است تا نسبت ایزوتوپ ها تا از برخی به برج دیگر به مقدار ۰۱/۰ درصد تغییر پیدا کند.


    در نهایت موقعی که نسبت اورانیوم ۲۳۵ به اورانیوم ۲۳۸ به ۵ درصد رسید باید برای تخلیص کامل از سانتریفوژهای بسیار قوی استفاده نمود.

    برای ساختن نیروگاه اتمی، اورانیوم طبیعی و یا اورانیوم غنی شده بین ۱ تا ۵ درصد کافی است.

    ولی برای تهیه بمب اتمی حداقل ۵ تا ۶ کیلوگرم اورانیوم ۲۳۵ صددرصد خالص نیاز است.

    عملا در صنایع نظامی از این روش استفاده نمی شود و بمب های اتمی را از پلوتونیوم ۲۳۹ که سنتز و تخلیص شیمیایی آن بسیار ساده تر است تهیه می کنند.

    عنصر اخیر را در نیروگاه های بسیار قوی می سازند که تعداد نوترون های موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز می کند.

    عملاً کلیه بمب های اتمی موجود در زراد خانه های جهان از این عنصر درست می شود.روش ساخت این عنصر در داخل نیروگاه های اتمی به صورت زیر است: ایزوتوپ های اورانیوم ۲۳۸ شکست پذیر نیستند ولی جاذب نوترون کم انرژی (نوترون حرارتی هستند.

    تعدادی از نوترون های حاصل از شکست اورانیوم ۲۳۵ را جذب می کنند و تبدیل به اورانیوم ۲۳۹ می شوند.

    این ایزوتوپ از اورانیوم بسیار ناپایدار است و در کمتر از ده ساعت تمام اتم های به وجود آمده تخریب می شوند.

    در درون هسته پایدار اورانیوم ۲۳۹ یکی از نوترون ها خودبه خود به پروتون و یک الکترون تبدیل می شود.بنابراین تعداد پروتون ها یکی اضافه شده و عنصر جدید را که ۹۳ پروتون دارد نپتونیم می نامند که این عنصر نیز ناپایدار است و یکی از نوترون های آن خود به خود به پروتون تبدیل می شود و در نتیجه به تعداد پروتون ها یکی اضافه شده و عنصر جدید که ۹۴ پروتون دارد را پلوتونیم می نامند.

    این تجربه طی چندین روز انجام می گیرد.

    فیزیک هسته‌ای شکافت هسته‌ای: در این روش هسته یک اتم توسط یک نوترون به دو بخش کوچکتر تقسیم می‌شود.

    در این روش غالباً از عنصر اورانیوم استفاده می‌شود گداخت هسته‌ای: در این روش که در سطح خورشید هم اجرا می‌شود، معمولاً هیدروژن‌ها با برخورد به یکدیگر تبدیل به هلیوم می‌شوند و در این تبدیل، انرژی بسیار زیادی بصورت نور و گرما تولید می‌شود طراحی بمب‌های هسته‌ای برای تولید بمب هسته‌ای، به یک سوخت شکافت‌پذیر یا گداخت‌پذیر، یک وسیله راه‌انداز و روشی که اجازه دهد تا قبل از اینکه بمب خاموش شود، کل سوخت شکافته یا گداخته شود نیاز است.

    بمب‌ شکافت هسته‌ای 1- بمب‌ هسته‌ای (پسر کوچک) که روی شهر هیروشیما و در سال 1945 منفجر شد 2- بمب هسته‌ای (مرد چاق) که روی شهر ناکازاکی و در سال 1945 منفجر شد بمب گداخت هسته‌ای : 1- بمب گداخت هسته‌ای که در ایسلند بصورت آزمایشی در سال 1952 منفجر شد بمب‌های شکافت هسته‌ای بمب‌های شکافت هسته‌ای از یک عنصر شبیه اورانیوم 235 برای انفجار هسته‌ای استفاده می‌کنند.

    این عنصر از معدود عناصری است که جهت ایجاد انرژی بمب هسته‌ای استفاده می‌شود.

    این عنصر خاصیت جالبی دارد: هرگاه یک نوترون آزاد با هسته این عنصر برخورد کند ، هسته به سرعت نوترون را جذب می‌کند و اتم به سرعت متلاشی می‌شود.

    نوترون‌های آزاد شده از متلاشی شدن اتم ، هسته‌های دیگر را متلاشی می‌کنند.

    زمان برخورد و متلاشی شدن این هسته‌ها بسیار کوتاه است (کمتر از میلیاردم ثانیه !

    ) هنگامی که یک هسته متلاشی می‌شود، مقدار زیادی گرما و تشعشع گاما آزاد می‌کند.

    در طراحی بمب‌های شکافت هسته‌ای، اغلب از دو شیوه استفاده می‌شود روش رها کردن گلوله در این روش یک گلوله حاوی اورانیوم 235 بالای یک گوی حاوی اورانیوم (حول دستگاه مولد نوترون) قرار دارد هنگامی که این بمب به زمین اصابت می‌کند، رویدادهای زیر اتفاق می‌افتد مواد منفجره پشت گلوله منفجر می‌شوند و گلوله به پائین می‌افتد.

    1 گلوله به کره برخورد می‌کند و واکنش شکافت هسته‌ای رخ می‌دهد.

    2 بمب منفجر می‌شود.

    3 روش انفجار از داخل در این روش که انفجار در داخل گوی صورت می‌گیرد، پلونیم 239 قابل انفجار توسط یک گوی حاوی اورانیوم 238 احاطه شده است.

    هنگامی که مواد منفجره داخلی آتش گرفت رویدادهای زیر اتفاق می‌افتد مواد منفجره روشن می‌شوند و یک موج ضربه‌ای ایجاد می‌کنند.

    1 موج ضربه‌ای، پلوتونیم را به داخل کره می‌فرستد.

    2 هسته مرکزی منفجر می‌شود و واکنش شکافت هسته‌ای رخ می‌دهد.

    3 بمب منفجر می‌شود.

    4 بمب‌ گداخت هسته‌ای بمب‌های گداخت هسته‌ای ، بمب های حرارتی هم نامیده می‌شوند و در ضمن بازدهی و قدرت تخریب بیشتری هم دارند.

    دوتریوم و تریتیوم که سوخت این نوع بمب به شمار می‌روند، هردو به شکل گاز هستند و بنابراین امکان ذخیره‌سازی آنها مشکل است.

    این عناصر باید در دمای بالا، تحت فشار زیاد قرار گیرند تا عمل همجوشی هسته‌ای در آنها صورت بگیرد.

    در این شیوه ایجاد یک انفجار شکافت هسته‌ای در داخل، حرارت و فشار زیادی تولید می‌کند و انفجار گداخت هسته‌ای شکل می‌گیرد.در طراحی بمبی که در ایسلند بصورت آزمایشی منفجر شد، از این شیوه استفاده شده بود.

    در شکل زیر نحوه انفجار نمایش داده شده است.

    اثر بمب‌های هسته‌ای انفجار یک بمب هسته‌ای روی یک شهر پرجمعیت خسارات وسیعی به بار می آورد .

    درجه خسارت به فاصله از مرکز انفجار بمب که کانون انفجار نامیده می‌شود بستگی دارد.

    زیانهای ناشی از انفجار بمب هسته‌ای عبارتند از موج شدید گرما که همه چیز را می‌سوزاند.

    فشارموج ضربه‌ ای که ساختمان‌ها و تاسیسات را کاملاً تخریب می‌کند.

    تشعشعات را دیواکتیویته که باعث سرطان می‌شود بارش رادیواکتیو (ابری از ذرات رادیواکتیو که بصورت غبار و توده سنگ‌های متراکم به زمین برمی‌گردد) درکانون زلزله، همه‌چیز تحت دمای 300 میلیون درجه سانتی‌گراد تبخیر می‌شود!

    در خارج از کانون زلزله، اغلب تلفات به خاطر سوزش ایجادشده توسط گرماست و بخاطر فشار حاصل از موج انفجار ساختمانها و تاسیسات خراب می‌شوند.

    در بلندمدت، ابرهای رادیواکتیو توسط باد در مناطق دور ریزش می‌کند و باعث آلوده شدن موجودات، آب و محیط زندگی می‌‌شود دانشمندان با بررسی اثرات مواد رادیواکتیو روی بازماندگان بمباران ناکازاکی و هیروشیما دریافتند که این مواد باعث: ایجاد تهوع، آب‌مروارید چشم، ریزش مو و کم‌شدن تولید خون در بدن می‌شود.

    در موارد حادتر، مواد رادیواکتیو باعث ایجاد سرطان و نازایی هم می‌شوند.

    سلاح‌های اتمی دارای نیروی مخرب باورنکردنی هستند، به همین دلیل دولتها سعی دارند تا بر دستیابی صحیح به این تکنولوژی نظارت داشته باشند تا دیگر اتفاقی بدتر از انفجارهای ناکازاکی و هیروشیما رخ ندهد.

    مصارف صلح آمیز انرژی هسته ای بعضی اوقات تصویری که از انرژی هسته، فیزیک هسته ای یا هر چیزی که اسم هسته ای رویش باشد به ذهن ما می رسد، بمب، انفجار، جنگ فاجعه، زباله های هسته ای، آلودگی و خطر و مرگ است.

    ولی این فقط یک روی سکه است.

    روی دیگر سکه استفاده صلح آمیز از انرژی هسته ای است.

    فیزیک هسته ای بیشتر از آنچه تصورش را بکنید به بشر خدمت می کند، به جرأت می توان گفت زیان های انرژی هسته ای در مقابل فواید آن قابل چشم پوشی است.همان طور که می دانید مهمترین استفاده این علم در نیروگاه های هسته ای است، جایی که انرژی عظیمی برای فعالیتهای عظیم به دست می آید اما شاید تصورش را نکنید که هسته اتم در حفظ محیط زیست به ما کمک کند.

    با استفاده از آن می توان آلودگی آبها را بررسی کرد و در مورد آلودگی هوا هشدار داد و اطلاعات جدیدی در مورد کره زمین به دست آورد.

    فیزیک هسته ای پزشکان را در تشخیص و معالجه بیماریها یاری می کند.

    نقاطی را آشکار می کند که چشم انسان قادر به دیدن آنها نبوده است.

    علم و صنعت را در ساختن ماشین ها، هواپیماها و محصولات مصرفی بهتر و مطمئن تر کمک می کند.

    با تولید گیاهان جدید و ثمربخش مشکل تغذیه را حل نموده و استفاده از سموم گیاهی جدید و بی خطر را توسعه می دهد.

    به کمک فیزیک هسته ای می توان گذشته اسرار آمیز انسان و زمین را آشکار ساخت و عمر زمین و ساکنین آن را تعیین کرد.

    در زمانی که با بحران انرژی مواجه هستیم به کمک ما شتافته و امکان دسترسی به ذخایر سرشار طبیعی را فراهم می سازد.

    هسته اتم را به انسان می دهد که با ایجاد کانالها و لنگرگاههای عظیم قادر به تغییر نقشه ها و موانع طبیعی بوده و امید و دسترسی به منابع عظیم انرژی را جهت برنامه های وسیع آینده امکان پذیر می سازد.

    کاربردهای دیگر فیزیک هسته ای 1- برای کشف مطلبی اگر احتیاج به تجزیه و تحلیل موادی باشد که هیچ گونه امکان کنترلی روی آن نیست چه کاری می توان انجام داد؟

    مثلاً اگر بخواهیم مقداری خاک کفش مشخص مظنونی یا موی سر یک انسان و یا نفت خام یک کشتی را که مقداری از کالای خود را بطور غیر قانونی در جای دیگر فروخته است تجزیه و تحلیل نمایید، چه کاری می توانیم بکنیم؟

    البته می توان از روش شیمیایی استفاده کرد؛ اما روش سریع و مطمئن تری هم وجود دارد.

    نمونه ای از ماده ای را که نیاز به تجزیه دارد برداشته و آن را با ایزوتوپ رادیواکتیو مخلوط می کنیم، نمونه رادیواکتیو شده را در یک راکتور تحقیقاتی به وسیله نوترون بمباران می کنیم.

    با جذب نوترون نمونه پایدار شده و اتم های جسم مورد آزمایش نیز رادیواکتیو می شوند و تابش می کنند.

    مقدار تابش برای هر عنصر متفاوت است.

    بنابراین اگر ده عنصر مختلف در نمونه داشته باشیم، ده نوع تابش مختلف نیز خواهیم داشت.

    از روی این تابش ها می توان نوع و میزان عناصر تشکیل دهنده نمونه را مشخص کرد.

    از این روش می توان برای ردیابی آلودگی هوا و هم چنین آلودگی دریا توسط نفت کش ها استفاده کرد.

    با آزمایش 40 نوع نفت مختلف که در نقاط مختلف جهان استخراج می شوند دانشمندان به این نتیجه رسیدند که در تمام مواد نفتی هفت نوع عنصر مشترک وجود دارد.

    اما مقدار آنها در نفتی که در یک نقطه استخراج می شود با نفت نقطه دیگر دنیا متفاوت است.

    هنگامی که مواد نفتی در جایی مشاهده می شوند نمونه ای از آن به آزمایشگاه برده شده و در معرض تابش نوترونی قرار می گیرد و به این ترتیب عناصر مختلف آن و مقدار آنها مشخص می شود.

    و می توان به طور دقیق اعلام کرد که کدام کشتی مسئول آلوده سازی بوده است.

    یک روش ساده و سریع، برای تجزیه هوای آلوده نیز وجود دارد.

    ابتدا وسیله صافی هایی آلودگی هوا گرفته می شود.

    و سپس به وسیله همان روشی که در بالا توضیح داده شده نوع و مقدار عناصر زیان آور موجود درا آن مشخص می شود.

    با تهیه نقشه های برای آلودگی هوا مشابه نقشه های تغییرات جوی، می توان پیش گویی هایی در مورد آلودگی هوا انجام داد و اقدامات لازم را در رابطه با پاکیزه نگه داشتن هوا انجام داد.

    2- یکی دیگر از کاربردهای تابش های هسته ای تصویر برداری است.

    همانطور که می دانید برای تصویر برداری از اجسام تیره ( کدر ) مثل بدن انسان از اشعه ایکس استفاده می شود.

    حالا اگر از اشعه ای پرانرژی تر از اشعه X استفاده کنیم، قابلیت نفوذ در عمق بیشتری را دارد و به این ترتیب از اجسام ضخیم تر نیز می توان عکس برداری کرد.

    اشعه گاما خیلی از اشعه X قوی تر است و می تواند در فلزات و اجسام تیره به قطر چند اینچ نفوذ کند و این امکان را برای مهندسین فراهم کند تا داخل ماشین آلات را ببینند.

    3- ردیابی ایزوتوپ رادیواکتیو را تقریباً در تمام مراحل تأسیسات صنعتی پتروشیمی می توان مشاهده نمود.

    هنگام کشف و استخراج نفت، دانشمندان میله های رادیواکتیو را داخل چاههای آزمایشی فرو برده، سپس میزان انتشار تشعشع رادیواکتیو را در طبقات مختلف اندازه می گیرند زمین شناسان میزان بازتاب اشعه رادیواکتیو را ثبت نموده و یک تصویر واضح و دقیق از طبقات زیرین جهت حفاری بیشتر برای رسیدن به نفت در آن منطقه یا متوقف کردن کار به دست می آورند، در تأسیسات تصفیه و پالایش از ردیابی های ایزوتوپ های رادیواکتیو جهت دنبال کردن مواد پتروشیمی و آماده سازی آنها در قسمتهای مختلف استفاده می شود.

    در مرحله نهایی محصولات مواد نفتی تصفیه شده جهت تعیین درجه خالص بودن آنها با استفاده از ایزوتوپهای رادیواکتیو آزمایش می شوند در هنگام انتقال مواد نفتی در فاصله های زیاد، چون شرکتهای مختلف نفتی از لوله های نفت مشترک استفاده می کنند ردیابی ایزوتوپی مختلف جهت علامت گذاری ابتدای انتقال هر محموله نفتی به کار برده می شوند.

    نتیجه استفاده اصلی از انرژی هسته‌ای، تولید انرژی الکتریسته است.

    این راهی ساده و کارآمد برای جوشاندن آب و ایجاد بخار برای راه‌اندازی توربین‌های مولد است.

    بدون راکتورهای موجود در نیروگاه‌های هسته‌ای، این نیروگاه‌ها شبیه دیگر نیروگاه‌ها زغال‌سنگی و سوختی می‌شود.

    انرژی هسته‌ای بهترین کاربرد برای تولید مقیاس متوسط یا بزرگی از انرژی الکتریکی به‌طور مداوم است.

    سوخت اینگونه ایستگاه‌ها را اوانیوم تشکیل می‌دهد.

    چرخه سوخت هسته‌ای تعدادی عملیات صنعتی است که تولید الکتریسته را با اورانیوم در راکتورهای هسته‌ای ممکن می‌کند.

    اورانیوم عنصری نسبتاً معمولی و عادی است که در تمام دنیا یافت می‌شود.

    این عنصر به‌صورت معدنی در بعضی از کشورها وجود دارد که حتماً باید قبل از مصرف به صورت سوخت در راکتورهای هسته‌ای، فرآوری شود.

    الکتریسته با استفاده از گرمای تولید شده در راکتورهای هسته‌ای و با ایجاد بخار برای به‌کار انداختن توربین‌هایی که به مولد متصل‌اند تولید می‌شود.

    سوختی که از راکتور خارج شده، بعداز این که به پایان عمر مفید خود رسید می‌تواند به عنوان سوختی جدید استفاده شود.

    فعالیت‌های مختلفی که با تولید الکتریسیته از واکنش‌های هسته‌ای همراهند مرتبط به چرخه‌ سوخت هسته‌ای هستند.

    چرخه سوختی انرژی هسته‌ای با اورانیوم آغاز می‌شود و با انهدام پسمانده‌های هسته‌ای پایان می‌یابد.

    دوبار عمل‌آوری سوخت‌های خرج شده به مرحله‌های چرخه سوخت هسته‌ای شکلی صحیح می‌دهد.

تاریخچه برای بررسی تاریخچه فیزیک هسته‌ای لازم است ابتدا تاریخچه اتم را مطالعه کنیم. تمام مواد پیرامون ما از مولکول تشکیل شده است، مولکول هم به نوبه خود از اتم تشکیل شده است. دانشمندان و فلاسفه یونانی حدس و گمان می‌کردند که اتم تجزیه ناپذیر است. یکی از این دانشمندان از جمله دموکرتیوس (Democritus) کلمه اتم را از کلمه یو نانی «اتوموس» که به معنای «غیر قابل تجزیه» می‌باشد اقتباس ...

تاریخچه برای بررسی تاریخچه فیزیک هسته‌ای لازم است ابتدا تاریخچه اتم را مطالعه کنیم. تمام مواد پیرامون ما از مولکول تشکیل شده است، مولکول هم به نوبه خود از اتم تشکیل شده است. دانشمندان و فلاسفه یونانی حدس و گمان می‌کردند که اتم تجزیه ناپذیر است. یکی از این دانشمندان از جمله دموکرتیوس (Democritus) کلمه اتم را از کلمه یو نانی «اتوموس» که به معنای «غیر قابل تجزیه» می‌باشد اقتباس ...

داستان کشف و گسترش انرژي هسته‌اي، که در مفهوم اين پژوهش انرژي‌اي است که در اثر شکافت اوارنيم و احتمالاً عناصر سنگين ديگر آزاد مي‌شود، به سال 1311/1932، که چادويک در آزمايشگاه کاونديش، واقع در کمبريج، نوترون را شناسايي کرد، بر مي‌گردد. اين کشف از چن

اتم در زبان يونانى به معنى تقسيم ناپذير است. اين ايده، زاده تفکر دموکريتوس فيلسوف يونانى در ???? سال پيش است. براى او اين تصور محال بود که اجسام مادى بتوانند بى حد و حصر تقسيم شوند. اما «جان دالتون» شيميدان بود که نخستين نظريه اتمى نوين را ارائه کرد

بمب هسته اي چگونه کار مي‌کند؟ شما احتمالاً در کتابهاي تاريخ خوانده‌ايد که بمب هسته‌اي در جنگ جهاني دوم توسط آمريکا عليه ژاپن بکار رفت و ممکن است فيلم‌هايي را ديده باشيد که در آنها بمب‌هاي هسته‌اي منفجر مي‌شوند. درحاليکه در اخبار مي‌شنويد، برخي

کار و انرژي از مفاهيم بسيار مهم و اساسي فيزيک است. انرژي به معني توانايي انجام دادن کار تعريف شده است. اگر جسمي بتواند کار انجام دهد، داراي انرژي است. اما خود کار چيست؟ طبق تعريف کار برابر است با حاصلضرب داخلي بردار نيرو در بردار جابجايي، يعني W=F.d

فیزیک چیست ؟ فیزیک یکی از شاخه های مهم ” شاید مهم ترین ” علوم طبیعی بوده و بررسی تمام پدیده های طبیعی را به نحوی زیر پوشش خود قرار می دهد . علم فیزیک در مطالعه عناصر تشکیل دهنده ماده یا جسم مادی و عمل متقابل این عناصر غیر قابل انکار و بررسی چنین برهم کنشها ، خواص جسم مادی را در پیش روی ما قرار داده و دسترسی به مجهولات پدیده های طبیعی را آسان می کند . فیزیک علاوه بر بررسی ساختار ...

آشنایی با فعالیت های سازمان انرژی اتمی ایران بدون تردید جمهوری اسلامی ایران از کشورهای صاحب نام در عرصه فناوری هسته ای در جهان است، اما کسب این جایگاه در گرو تلاش های بی وقفه کارشناسان و متخصصان اهل این سرزمین است که در طول سال های گذشته از هیچ کوششی فرو گذار نبوده اند. روایت جهانی شدن دانش هسته ای ایرانیان روایتی شنیدنی است که بازگویی و تامل در آن نسل امروز ما را با مسیر پیموده ...

تحقيقات کشاورزي تزايد روزافزون جمعيت و کمبود مواد غذايي در دنيا موجب توجه دانشمندان به ازدياد محصولات کشاورزي و همچنين بهبود کيفيت آنها گرديده است. در اين راستا مواد راديواکتيو به کمک بررسي‎هاي کشاورزي شتافت و انقلاب عظيمي در کشاورزي به وجود آورد ب

کشف و گسترش انرژي هسته اي مقدمه تاريخي داستان کشف و گسترش انرژي هسته اي ، که در مفهوم اين پژوهش انرژي‌اي است که در اثر شکافت اوارنيم و احتمالاً عناصر سنگين ديگر آزاد مي‌شود، به سال 1311/1932، که چادويک در آزمايشگاه کاونديش، واقع

مقدمه: حدود 100 سال پيش که براي اولين بار مسئله استفاده از انرژي عظيم هسته اي مطرح شد، بشر نمي‌توانست درک تجربي و صحيحي نسبت به اين موضوع داشته باشد. ولي ديري نپائيد که دانش و تکنولوژي اين انرژي در اختيار بشر قرار گرفت و توانست استفاده از آن را تج

ثبت سفارش
تعداد
عنوان محصول