ریاضیات
ریاضیات را معمولاً دانش بررسی کمیتها و ساختارها و فضا و دگرگونی (تغییر) تعریف میکنند. دیدگاه دیگری ریاضی را دانشی میداند که در آن با استدلال منطقی از اصول و تعریفها به نتایج دقیق و جدیدی میرسیم (دیدگاههای دیگری نیز در فلسفه ریاضیات بیان شدهاست).
ریاضیات خود یکی از علوم طبیعی بهشمار نمیرود، ولی ساختارهای ویژهای که ریاضیدانان میپژوهند بیشتر از دانشهای طبیعی به ویژه فیزیک سرچشمه میگیرند و در فضایی جدا از طبیعت و محض گونه گسترش پیدا میکند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز میگردند تا جوابشان را با آن مقایسه و بررسی کنند.
علوم طبیعی، مهندسی، اقتصاد و پزشکی بسیار به ریاضیات تکیه دارد ولی گاه ریاضیدانان به دلایل صرفاً ریاضی (و نه کاربردی) به تعریف و بررسی برخی ساختارها میپردازند.
موضوعهای اصلی ریاضیات
فهرستی الفبائی از عنوانهای ریاضی موجود است. در زیر بعضی از اصلیترین شاخهها و موضوعات ریاضی به صورت دستهبندی شده ارائه شده است:
کمیت
مجموعه، رابطه، تابع، عمل، گروه، میدان، عدد، اعداد طبیعی، اعداد بداست حسابی، اعداد ریاضی اخ است صحیح، اعداد اول، اعداد مرکب، اعداد گویا، اعداد گنگ، اعداد حقیقی، اعداد مختلط، اعداد جبری، عدد پی، عدد ای، چهارگانها، هشتگانها، شانزدهگانها، اعداد پی-ادیک، اعداد فوق پیچیده (Hypercomplex numbers)،اعداد فوق حقیقی (Hyperreal number)،اعداد فراواقعی (Surreal numbers)، بینهایت، اعداد ترتیبی، اعداد اصلی، ثابتهای ریاضی، پایه
چرا درک صحیح ریاضی برای خیلی از مردم مشکل است ؟
یادگیری ریاضیات بطور دقیق و منطقی یکی از مشکلات مهم کسانی است که وارد رشته ریاضی می شوند. ریشه اصلی این مشکلات در ماهیت ریاضی نهفته است. ریضیات از یک طرف علمی است که در اتباط با محیط پیرامون شکل می گیرد و از طرف دیگر علمی است مجرد که تحت قوانین منطقی و قواعد ذهنی بیان می شود.
مخلوط شدن این دو شیوه نگرش ریاضیات وعدم تشخیص مرزهای این دو شیوه فهم ریاضیات مانع اصلی درک و یادگیری مفاهیم ریاضی است. دانشجویان باید بتوانند ریاضیات مجرد را از ریاضیات تجربی تفکیک کنند. درک ریاضی به صورت یک علم مجرد دنباله اموزشهای دبیرستانی نیست و یک نظم فکری جدید را می طلبد. بنابراین مهمترین نکته ای را که دانشجویان باید به ان توجه کنند این است که در طرز تفکر خود نسبت به ریاضیات یک تغییر عمده ایجاد کنندو مطالبی را که از قبل یاد گرفته اند به عنوان اطلاعات عمومی تلقی کنند.
وقتی ریاضیات را به عنوان علم مجرد شروع می کنیم تمامی مطالبی را که یادگرفته ایم مورد بازنگری قرار می دهیم و همه چیز از نو شروع می شود و ابتدایی ترین خواص که شاید در دبستان بدون اثبات پذیرفته می شدند مجدد مورد بحث قرار می گیرند و با برهان به اثبات می رسند
خلاقیت ریاضی
مسلماً نمی توانم تمام آن چه را که در طی ترم های درسی آموزش می دهم در این جا عنوان کنم. اضافه کردن چند مثال دیگر از محاسبات متنوع و اثبات های ساده باعث می شود تا اندکی بیشتر با این موضوع آشنا شوید ولی کمکی به فهم کلان موضوع نمی کند. بنا بر این با تاخیر انداختن مثال ها ابتدا در مورد کلیات توضیح می دهم که ترسیم کننده خطوط اصلی راه ما است.
آموزش ریاضیات در مدارس با گرایش یادگیری الگوریتم ها و ترفندهای حل مسائل صورت می پذیرد. یعنی این که یک روش برای ضرب کردن اعداد به ما می دهند و می گویند این طور عمل کن و این طور بنویس. آن وقت اگر بگویند ثابت کنید ۳۵*۱۸=۱۵*۴۲ (* را به عنوان علامت ضرب به کار برده ام.) فرد ناخواسته عددها را ضرب می کند و به تساوی ۶۳۰=۶۳۰ می رسد. یک درجه بالاتر از آموزش الگوریتمیک آموزش مفهومی است. در این نوع از آموزش دانش آموزان به مفهوم ضرب و اعداد واقفند و می توانند چنین روشی را بیابند:
۳۵*۱۸=(۵*۷)*(۳*۶)=(۵*۳)*(۶*۷)=۱۵*۴۲
اما یک راه حل مبتکرانه و خلاقانه راه حلی شبیه راه حل زیر است:(/ را به عنوان علامت تقسیم به کار برده ام.)
۱=(۷*۳)/(۳*۷)=(۳۵*۱۸)/(۱۵*۴۲)
۴۲ و ۱۸ به ۶ ساده شده اند ۱۵ و ۳۵ به ۵ .
وقتی حاصل کسری یک شود صورت و مخرج آن با هم مساوی اند.