) الگوریتم های ژنتیکی به کاربره شده در مدیریت ترافیک هوایی
افزایش ترافیک هوایی، از زمان شروع تجارت هوایی، باعث مشکل اشباع در فرودگاهها، یا مکانهای فضایی شده است. در حالی که هواپیماها ارتقاء می یابند و اتوماتیک تر می شوند. اما هنوز کنترل ترافیکی بر پایه تجربیات انسان است. مطالعه حاضر ، دو مشکل مدیریت ترافیک هوایی (ATM) را به جزء بیان می کند، که برای آنها راه حل های بر پایه الگوریتم ژنتیکی وجود دارد. اولین کاربرددر رابطه با مشکل enroute است و دومین کاربرد در مورد مشکلات مدیریت ترافیکی در سکوهای فرودگاهها است.
9.1) راه حل درگیریهای Enroute = کنترل ترافیک هوایی (ATC) می تواند توسط یک سرس از فیلترها نشان داده شود، جایی که هر فیلتر یک ؟ خاص دارد و افق های خاص محیطی و موقتی را اداره می کند. 5 سطح (لِوِل) قابل تشخیص است. در دوره طولانی (بشتر از 6 ماه) ترافیک در یک روش میکروسکوپی می تواند برنامه ریزی شود. برای مثال مردم با یک نمودار ترافیکی روبرو هستند که اندازه های کمیته ، که برنامه های ساعتی و موافقت با ارتش را مورد توجه قرار داده است، به کاربرده می شود برای فرهنگ هواپیمایی در زمانهای اوج یعنی بعد ظهر جمعه.
در دوره کوتاهتر ، معمولاً در مورد تنظیمات قبل ، صحت می شود. این مورد شامل برنامه ریزی کردن روز ترافیک ، یک یا دو روز قبل تر می شود. در این مرحله ، اشخاص ایده مشخصی درباره بیشتر برنامه ی پرواز و ظرفیت کنترل هر مرکز دارند. حداکثر جریان هواپیما که می تواند یک قطر را سوراخ کند. ظرفیت قطر نامیده می شود. این عمل توسط CFMU3 انجام می شود. ترافیک میان آتلانتیک برای مثال در این مرحله مورد توجه قرار می گیرد. راههای هوایی، تنظیم ساعت های پرواز و حالت هوا مورد توجه قرار می گیرد. به طور کل این شغل توسط FMP4 در هر مرکز صورت می گیرد. آخرین فیلتر ، فیلتر تاکتیکال است که با کنترل داخل یک قطر بستگی دارد. زمان متوسطی که یک هواپیما در یک بخش صرف می کند حدود 15 دقیقه است. اینجا میزان رویت کنترل کننده کمی بالاتر از میزان دریافت طرحهای پرواز است چند دقیقه قبل از ورود هواپیما به بخش. کنترل کننده وظیفه چک کردن، حل اختلافات و همپایه بودن با بخش های همسایه را تضمین می کند. در این حالت تعیین تعریف برخورد مطلوب است. دو هواپیما با هم برخورد دارندوقتی که فاصله جدایی افقی بین آنها کمتر 5 مایل باشد و تفاوت انها در ارتفاع کمتر از 1000 فیت باشد. روش هایی که توسط کنترل کننده برای حل این برخورد به کار می رود بر پایه مسائل زیر است.
بر روی تجارب قبلی و هر دانش خلاقی. وقتی که چند جفت از هواپیماها در اختلاف مشابهی با هم تماس دارند، آنها با ساده کردن مشکلات شروع می کنند که فقط اختلافات ابتدایی را داشته باشند.
برای حل فیلتر اضطراری به نظر نمی رسد که مداخله کند به جز مواردی که سیستم کنترل دچار نقض شده یا اینکه ضعیف شده است. برای کنترل کننده ، آشیانه اطمینان مسیر هر هواپیما را با افق موقت چند دقیقه ایی پیش بینی می کنند. از موقعیت های رادار و الگوریتم های ادامه دار استفاده می کند و یک اخطار را در لحظه برخورد بوجود می آورد. این یک راه حلی را برای برخورد پیشنهاد نمی کند. به طور کل TCAS به نظر می رسد که از چنین تصادفی جلوگیری کند. پیش بینی موقت کمتر از یک دقیقه است (بین 25 تا 40 ثانیه) بنابر این بسیار دیر است برای کنترل کننده مانور هواپیما را، همانطور که تخمین زده شده که نیاز به حداقل زمان 1 تا 2 دقیقه برای آنالیز کردن موقعیت دارد راه حلی را پیدا کنند و آنرا به هواپیماها اطلاع دهند. به طور عمومی TCAS، هواپیمای اطاف را جستجو می کند و به خلبان برای حل برخورد پیشنهاداتی می کند. این فیلتر باید برخورد غیر قابل پیش بینی را حل می کند، برای مثال وقتی که یک هواپیما از سطح پرواز خود بالاتر رفته است یا یک مشکل تکنیکی که به طور قابل توجهی ارتفاع آنرا پایین آورده است. کاربردهای پیشنهاد شده در این بخش با فیلتر تاکتیکال ارتباط دارند: دانستن موقعیت هواپیما در لحظه حاضر و موقعیت بعدی آنها، را بوجود نمی آورد. راه حل برای پایه چندین تصور است. یک هواپیما نمی تواند سرعت خود را تغییر دهد (یا بسیار آرام باید این کار را بکند) مگر در مواقع فرود. نباید اینطور تصور شود که یک هواپیما با سرعت انی پرواز می کند، به غیر مواردی که سطح بندی می شود و هیچ بادی وجود ندارد. به علاوه در طول فرود و بلند شدن ، مسیر آن یک خط صاف نیست. هواپیماها در مسیر چرخش خود در فشار هستند. به طور عمومی خلبانها مانور افقی را به عمودی ترجیح می دهند مگر در هنگام بلند شدن یا نشستن. اگر چه امروزه خلبانهای اتوماتیک قرتمندتر از خلبانهای انسانی هستند (در موقعیت های نرمال پرواز) برای مواقعی که حقیقی به نظر می رسد توجه کردن به این مسیرها که توسط انسانها قابل دسترسی نیست.
خلبان. نامطمئنی بین سرعت فرود آمدن و بلند شدن بسیار زیاد است (بین 10% و 50% سرعت عمودی). در طول مسافرت ، نااطمینانی در سرعت کاهش می یابد. بعد از آن ، نا اطمینانی به همراه گذشت زمان بیشتر نمی شود، همانطور که یک هواپیما، ارتفاع خود را کاملاً خوب نگه داشته است. تقریباً غیر ممکن است که به دنبال راه حل های آنالیتکی برای حل مشکل برخورد باشیم . اما، اصلی ترین مشکل از پیچیدگی مشکل بوجود می آید. بخش اول این فصل ، به معرفی بعضی از توضیحات می پردازد که حل مشکل برخورد برای ما قابل فهم تر می کند و بخش دوم به تاریخچه ایی کوتاه از الگوریتمهای آزمایش شده برای این مشکل و محدودیتهای آن می پردازد. قسمت سوم مدلهای مشکل را به جزء بررسی می کند و پیشرفت الگوریتم ژنیتکی برای حل مشکل در بخش چهارم وجود دارد که با آمارهای ؟ بدست آمده دنبال می شود.