دانلود ترجمه تحقیق زبان فنی - Technical language

Word 1 MB 30584 17
مشخص نشده مشخص نشده کامپیوتر - IT
قیمت قدیم:۱۶,۰۰۰ تومان
قیمت: ۱۲,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • Shortwava Transmitter

     

    This transmitter circuit operates in shortwave HF band (6 MHz to 15 MHz), and can be used for short-range communication and for educational purposes.

    The circuit consists of a mic amplifier , a variable frequency oscillator , and modulation amplifier stages.

    Transistor T1 (BF195) is used as a simple RF oscillator , Resistors R6 and R7 determine base bias , while resistor R9 is used for stability .

    Feedback is provided by 150pF capacitor C11 to sustain.

    The primary of shortwave oscillator coil and variable condenser VC1 (365pF , 1/2J gang) form the frequency determining network.

    By varying the coil inductance or the capacitance of gang condenser , the frequency of oscillation can be changed.

    The carrier RF signal from the oscillator is inductively coupled through the secondary of transformer X1 to the next RF amplifier-cum-modulation stage built around transistor T2 that is operated in class 'A' mode.

    Audio signal from the audio amplifier built around IC BEL1895 is coupled to the emitter of transistor 2N2222 (T2) for RF modulation.

    IC BEL1895 is a monolithic audio power amplifier designed for sensitive AM radio applications.

    It can deliver 1W power to 4 ohms at 9V power supply , with low distortion and noise characteristics.

    Sinca the amplifier's voltage gain is of the order of 600 , the signal from condenser mic can be directly connected to its input without any amplification.

    The transmitter's stability is governed by the quality of the tuned circuit components as well as the degree of regulation of the supply voltage.

    A 9V regulated power supply is required.

    RF output to the aerial contains harmonics , because transistor T2 doesn't have tuned coil in its collector circuit.

    However , for short-range communication , this dose not create any problem.

    The harmonic content of the output may be reduced by means of a high-QL-C filter or resonant L-C traps tuned to each of the prominent harmonics.

    The power output of this transmitter is about 100 milliwatts.

    فرستنده موج کوتاه

     

    این مدار فرستنده در باند موج کوتاه HF (15Mhz – 6mhz) کار می کند ، و قابل استفاده برای ارتباطات با برد کوتاه برای مقاصد آموزشی است.

    مدار شامل یک تقویت کننده میکروفن ، یک نوسان ساز (اوسیلاتور) فرکانس متغیر ، یک طبقه تقویت کننده مدولاسیون می باشد.

    T1 (BF 195) به عنوان یک اوسیلاتور RF ساده استفاده شده است.

    مقاومت های R6 و R7 مقدار بایاس پایه بیس ترانزیستور T1 را تعیین می کند ، در حالی که مقاومت R9 برای پایداری استفاده شده است.

    فیدبک با استفاده از خازن C11 با مقدار 150pf برای تقویت نوسان ایجاد شده است.

    اولیه سیم پیچ نوسانی موج کوتاه به همراه خازن متغیر VC1 فرکانس شبکه را تعیین می کند.(کندانسور)

    با تغییر دادن مقدار اندوکتانس سیم پیچ یا مقدار خازنی کندانسور (چگالنده) فرکانس نوسان را می توان عوض کرد.

    سیگنال carrier RF از اوسیلاتور به صورت القائی از ثانویه ترانسفورمر X1 عبور می کند و به تقویت کننده دیگر RF می رسد.

    طبقه مدولاسیون ساخته شده در اطراف ترانزیستور T2 در نوع کلاس A فعالیت می کند.

    سیگنال های صوتی تولیدی از تقویت کننده صوتی در اطراف آی سی BEL 1895 ساخته شده و به امیتر ترانزیستور T2 (2N2222) برای مدولاسیون RF القاء می شوند.

    آی سی BEL 1895 یک آی سی تک پارچه پاور آمپیلی فایر صوتی است که برای کاربرد های حساس رادیوئی AM طراحی شده است.این آی سی توانائی تحویل قدرت 1 وات را به بلند گوی 4 اهمی را با منبع تغذیه 9 ولت دارد.

    البته با کمترین مقادیر نویز و اعوجاج.

    هنگامی که گین ولتاژ تقویت کننده بیشتر از 600 است ، سیگنال خارج شده از میکروفن خازنی می تواند مستقیما به ورودی آی سی وصل شود بدون اینکه هیچ تقویتی بشود.

    پایداری فرستنده به وسیله کیفیت و تنظیم عالی قطعات به اندازه قطعات تنظیم شده در منبع تغذیه تعیین می شود.

    یک منبع تغذیه 9 ولت دقیق نیاز است.

    فرکانس رادیوئی خارج شده به طرف آنتن هوائی مقذاری امواج هارمونیک دارد و این به علت نبودن سیم پیچ تنظیم شده در کلکتور ترانزیستور T2 است.

    به هر حال برای ارتباطات با برد کوتاه این مدار هیچ مشکلی ایجاد نمی کند.

    هارمونیک به همراه خروجی را می توان کم کرد و این کار به وسیله کیفیت بیشتر فیلتر L-C یا تنظیم رزونانس L-C برای هر یک از هارمونیک های مهم انجام می شود.

    توان خروجی این فرستنده در حدود 100 میلی وات است.

    پایداری فرستنده به وسیله کیفیت و تنظیم عالی قطعات به اندازه قطعات تنظیم شده در منبع تغذیه تعیین می شود.

    توان خروجی این فرستنده در حدود 100 میلی وات است.

    مرور محصول در این سریال از دوربین رنگی 1.3" SONYاستفاده شده است که HAD CCD آن دارای قدرت تشخیص عالی رنگ است و دارای سنسور تصویر می باشد، دارای عمر مفید طولانی و قابلیت اطمینان زیاد.

    بعلاوه دارای میکروفن حساس و همچنین افزایش کیفیت بوسیله نظارت است.

    خصوصیات کریستال وضوح تصویر لنز 1.3" SONY H.R.

    رنگ عالی HAD CCD سنسور تصویر برای وضوح بهترتصویر.

    قدرت تشخیص عالی.

    کیفیت تصویر بالا با قدرت تشخیص عالی .

    حداقل شدت روشنایی مناسب:0.25/F1.2 با میکروفن حساس.

    کنترولر خودکار دیافراگم الکترونیکی .

    نسبت بیشتر سیگنال به نویز نسبت به 48dB .

    پشت قطعه: مشخصات دوربین گنبدی مرور محصول قدرت تشخیص بالا ، پرفروش ترین سری دوربین.

    درای قدرت تشخیص بالا ، دوربین مخصوص کنترل محیط ، ارائه دهنده تصاویر چند بعدی ، ارائه دهنده امنیعت.

    دارای کیفیت اجراء بالا و ارازن قیمت (بی همتا) ، فراهم کننده امنیعت برای شما قابل خریداری.

    خصوصیات دوربین رنگی 1.3" RH .

    قدرتتشخیص بالا در 480 TVL .

    (خط های افقی تلویزیون = TVL) حساسیت کم دوربین به نور در 0.5 Lux در F1.6 .

    (واحد درخشندگی = Lux) قابلیت تغییر پذیری کانون عدسی تا 2X .

    (f = 4.0 ~ 9.0mm) طرح پوشش مقاوم در مقابل خرابکاری.

    (جلسه IPxx7 استانداردهای بین المللی) مشخصات ریزپردازنده‌ها پیدایش ریز پردازنده‌ها در سال ۱۹۷۰ به طور قابل توجهی در طراحی و پیاده سازی پردازنده‌ها تأثیر گذار بود.

    از زمان ابداع اولین ریزپردازنده (اینتل۴۰۰۴)در سال ۱۹۷۰ و اولین بهره برداری گسترده از ریزپردازنده اینتل ۸۰۸۰ در سال ۱۹۷۴ ، این روند رو به رشد ریزپردازنده‌ها از دیگر روشهای پیاده سازی واحدهای پردازش مرکزی (CPU) پیشی گرفت ،کارخانجات تولید ابر کامپیوترها و کامپیوترهای شخصی در آن زمان اقدام به تولید مدارات مجتمع با برنامه ریزی پیشرفته نمودند تا بتوانند معماری قدیمی کامپیوترهای خود را ارتقا دهند و در نهایت ریز پردازنده‌ای سازگار با مجموعه دستورالعمل‌ها ی خود تولید کردند که با سخت افزار و نرم افزارهای قدیمی نیز سازگار بودند.

    با دستیابی به چنین موفقیت بزرگی امروزه در تمامی کامپیوترهای شخصی CPUها منحصرا از ریز پردازنده‌ها استفاده می‌کنند.

    نسل قبلی ریزپردازنده‌ها از اجزا و قسمت‌های بیشمار مجزا از هم تشکیل می‌شد که در یک یا چندین برد مداری قرار داشتند.

    اما ریزپردازنده‌ها ، CPUهایی هستند که با تعداد خیلی کمی IC ساخته می‌شوند ، معمولاً فقط از یک IC ساخته می‌شوند.

    کارکرد در یک قالب مداری به مفهوم زمان سوئیچینگ سریعتر به دلیل حذف عوامل فیزیکی می‌باشد.

    مانند کاهش بهره پارازیتی خازنها ، که همگی در نتیجه کوچکی اندازه CPU هاست.

    این حالت باعث هم‌زمان سازی ریزپردازنده‌ها می‌شود تا بتوانند پالس ساعتی در رنج چند ده مگا هرتز تا چندین گیگا هرتز داشته باشند.

    به علاوه تعداد مینی ترانزیستورها روی یک IC افزایش می‌یابد و پیچیدگی عملکرد با افزایش ترانزیستورها در یک پردازنده به طرز چشمگیری باعث افزایش قابلیت CPUها می‌شود.

    این واقعیت به طور کامل مبین قانون مور می‌باشد که در آن بطور کامل و دقیق رشد افزایشی ریزپردازنده‌ها و پیچیدگی آنها با گذر زمان پیش بینی شده بود.

    در حالیکه پیچیدگی ، اندازه ، ساختمان و شکل کلی ریزپردازنده‌ها نسبت به ۶۰ سال گذشته کاملاً تغییر کرده ، این نکته قابل توجه‌است که طراحی بنیادی و ساختاری آنها تغییر چندانی نکرده‌است.

    امروزه تقریباً تمام ریزپردازنده‌های معمول می‌توانندپاسخگوی اصل نیومن در مورد ماشینهای ذخیره کننده برنامه باشند.

    مطابق قانون مور که در حال حاضر نیز مطابق آن عمل می‌شود ، روی کرد استفاده از فناوری جدید کاهش در مدارات مجتمع ترانزیستوری مد نظر است.

    در نهایت مینیاتوری کردن مدارهای الکترونیکی باعث ادامه تحقیقات و ابداع روشهای جدید محاسباتی مانند ایجاد کامپیوترهای ذره‌ای (کوانتومی) شد .

    به علاوه موجب گسترش کاربرد موازی سازی و روشهای دیگر که ادامه دهنده قانون سودمند کلاسیک نیومن است گردید.

    عملکرد ریزپردازنده‌ها کارکرد بنیادی بیشتر ریزپردازنده‌ها علیرغم شکل فیزیکی که دارند ، اجرای ترتیبی برنامه‌های ذخیره شده را موجب می‌شود.

    بحث در این مقوله نتیجه پیروی از قانون رایج نیومن را به همراه خواهد داشت.

    برنامه توسط یک سری از اعداد که در بخشی از حافظه ذخیره شده‌اند نمایش داده می‌شود.چهار مرحله که تقریباً تمامی ریزپردازنده‌هایی که از [ قانون نیومن] در ساختارشان استفاده می‌کنند از آن پیروی می‌کنند عبارت‌اند از : فراخوانی ،رمز گشایی ، اجرا ، بازگشت برای نوشتن مجدد.

    مرحله اول ، فراخوانی ، شامل فراخوانی یک دستورالعمل (که به وسیله یک عدد و یا ترتیبی از اعداد نمایش داده می‌شود) از حافظه برنامه می‌باشد.

    یک محل در حافظه برنامه توسط شمارنده برنامه(PC) مشخص می‌شود که در آن عددی که ذخیره می‌شود جایگاه جاری برنامه را مشخص می‌کند.به عبارت دیگر شمارنده برنامه از مسیرهای پردازنده در برنامه جاری نگهداری می‌کند.

    بعد از اینکه یک دستورالعمل فراخوانی شد شمارنده برنامه توسط طول کلمه دستورالعمل در واحد حافظه افزایش می‌یابد.

    گاهی اوقات برای اینکه یک دستورالعمل فراخوانی شود بایستی از حافظه کند بازخوانی شود.

    که این عمل باعث می‌شود ریزپردازنده همچنان منتظر بازگشت دستورالعمل بماند.

    این موضوع به طور گسترده‌ای در پردازنده‌های مدرن با ذخیره سازی و معماری مخفی سازی در حافظه‌های جانبی مورد توجه قرار گرفت.

    دستورالعملی که پردازنده از حافظه بازخوانی می‌کند باید معین شده باشد که چه عملی را CPU می خواهد که انجام دهد.

    در مرحله رمزگشایی ، دستورالعمل به بخش‌هایی که قابل فهم برای قسمت‌های پردازنده هستند تفکیک می‌شود.

    روشی که در آن مقادیر دستورالعمل شمارشی ترجمه می‌شود توسط معماری مجموعه دستورالعمل‌ها (ISA) تعریف می‌شود.

    اغلب یک گروه از اعداد در یک دستورالعمل که شناسنده نامیده می‌شوند بیانگر این هستند که کدام فرایند باید انجام گیرد.

    قسمت باقیمانده اعداد معمولاً اطلاعات مورد نیاز برای دستور را در بر دارند ، مانند عملوندهای یک عملیات اضافی که در واقع چنین عملوندهایی ممکن است به عنوان یک مقدار ثابت داده شوند(مقدار بیواسطه) ، یا اینکه به عنوان یک محل برای مکان یابی یک مقدار ، یک ثبات و یا آدرس حافظه که به وسیله گروهی از مدهای آدرس دهی تعیین می‌گردد داده شوند.

    در طرحهای قدیمی سهم پردازنده‌ها یی که در رمزگشایی دستورالعملها نقش داشتند از واحد سخت افزاری غیر قابل تغییر برخوردار بودند.

    اگرچه در بیشتر پردازنده‌ها و ISA‌های انتزاعی و پیچیده اغلب یک ریز برنامه دیگر جهت ترجمه دستورالعمل به صورت ترکیب سیگنالهای مختلف برای CPU ‌ها وجود دارد.

    این ریز برنامه گاهی قابلیت دوباره نویسی را دارد ، بنابر این آنها می‌توانند برای تغییر نحوه رمز گشایی دستورالعملها حتی پش از آنکه CPU ها تولید شدند اصلاحاتی را مجدداً انجام دهند.

    بعد از مراحل فراخوانی و رمزگشایی مرحله اجرای دستور انجام می‌گیرد.

    در طول این مرحله قسمت‌های مختلفی از پردازنده با هم مرتبط هستند و می‌توانند یک عملکرد مطلوب ایجاد کنند.

    برای مثال اگر یک عملکرد اضافی درخواست شود واحد محاسبه و منطق (ALU)با یک سری از ورودی‌ها و خروجی‌ها مرتبط خواهد شد.

    ورودی‌ها اعداد مورد نیاز برای افزوده شدن را فراهم می‌کنند و خروجیها شامل جمع نهایی اعداد می‌باشند.

    ALU شامل مجموعه‌ای از مدارهاست تا بتواند عملیاتهای ساده محاسباتی و منطقی را روی ورودی‌ها انجام دهد.

    اگر فرایند اضافی نتیجه بزرگی برای کارکرد پردازنده ایجاد کند یک پرچم سر ریز محاسباتی در ثبات پرچمها ایجاد می‌شود.

    مرحله پایانی یعنی بازگشت به مکان اولیه و آمادگی برای نوشتن مجدد پس از مرحله اجرا در قسمتی از حافظه به وجود می‌آید.

    گاهی اوقات نتایج محاسبات در ثباتهای پردازنده‌های خارجی نوشته می‌شوند که اینکار برای دسترسی سریع به وسیله دستورهایی که بعدا به برنامه داده می‌شود انجام می‌گیرند.

    در حالت دیگر ممکن است نتایج با سرعت کمتری نوشته شوند اما در حجم بزرگ‌تر و ارزش کمتر ، که این نتایج در حافظه اصلی ذخیره خواهند شد.

    برخی از دستورات شمارنده برنامه که قابل تغییر هستند نسبت به آن دسته از اطلاعاتی که مستقیما نتایج را تولید می‌کنند ترجیح داده می‌شوند.

    در اصل همگی این موارد خیزش نامیده می‌شوند و رفتارهایی شبیه حرکت در یک لوپ ، زمان اجرای برنامه (در طول استفاده از خیزش‌های شرطی) و همچنین روند توابع در برنامه‌ها را تسهیل می‌دهند.

    تعداد بسیاری از دستورات وضعیت یک رقم در ثبات پرچمها را تغییر می‌دهند.

    این پرچمها می‌توانند برای تأثیر گذاری در چگونگی عملکرد یک برنامه مورد استفاده قرار گیرند.

    برای مثال یک نوع از دستورات مقایسه‌ای به مقایسه یک عدد و مقدار موجود در ثبات پرچمها رسیدگی می‌کند.

    این پرچم ممکن است بعدا با یک دستورالعمل جهشی برای مشخص کردن روند برنامه مورد استفاده قرار بگیرد.

    بعد از اجرای دستورالعمل و نوشتن مجدد روی اطلاعات منتجه فرآیند به طور کامل تکرار می‌شود و با دستور بعدی چرخه به طور معمول مقدار بعدی را از ترتیب شمارشی فراخوانی می‌کند، که این عمل به دلیل روند افزایشی مقدار شمارنده برنامه می‌باشد.

    در پردازنده‌های خیلی پیچیده تر نسبت به آنچه توضیح داده شد چندین دستورالعمل قابل فراخوانی ، رمز گشایی و اجرا به صورت هم‌زمان می‌باشند.

    این امر به طور کلی بیان می‌دارد که چه مباحثی به روش زمانبندی کلاسیک RISC مربوط می‌شود ، که در حقیقت این فرایند در پردازنده‌های معمولی که در بسیاری از دستگاههای الکترونیکی مورد استفاده قرار می‌گیرند متداول است.

    (ریز کنترل کننده یا میکرو کنترولر) 509مشخصاتدوربین 1.3"SONY رنگ عالی HAD CCD سنسور تصویرآشنایی با سازه برقی582(V) 494(V) / 752(H) 768(H)تعداد پیکسل480 خط تلویزیونقدرت تشخیص0.25Lux / F1.2حداقل شدت روشناییبیشتر از 48dB (AGC off)نسبت سیگنال به نویز1.60 در 1.100000 ثانیه (NTSC) ;1.50 در 1.100000 ثانیه (PAL)دیافراگم الکترنیکیپایه ی قابل تغییر C / CSپایه ی لنزقابلیت انتخاب توسط کاربر AES / D.D.

    / V.D.مدل عنبیه(اسکن تصویر)خاموش / روشنBLCحداکثر قابلیت انتخاب توسط کاربر / معمولیAGCقابلیت انتخاب توسط کاربر در حالت خاموش /(FL1/100(120)) در حالت روشنشدت لرزش تصویرATW / HOLDتنظیم روشناییOn / OffCRLESSاهم , 75 مخلوط 1.0Vp-pخروجی تصویرخروجی صداخروجی صداتوان منبع برقتوان مصرفیابعاد (میلی متر) AVC694مدلدوربین 1.3"HR رنگی CCD سنسور تصویرآشنایی با سازه برقی582(V) 492 (V) / 753 (H) 771 (H)تعداد پیکسل480 خط تلویزیونقدرت تشخیص0.5 Lux / F1.6حداقل شدت روشناییبیشتر از 48dB (AGC off)نسبت سیگنال به نویزثانیه / 100,000 در 1.60 (1.50)دیافراگم الکترنیکی)میلی متر f 4.0mm ~ f 9.0mm (mm =لنز36درجه 83 ~ درجهزاویه لنزAESمد IRISATWتنظیم روشناییIPxx7درجه IPاهم , 75 مخلوط1.0Vp-pخروجی تصویرDC 12Vتوان منبع برق110 mAجریان مصرفی(ارتفاع 92 ()قطر دایره 124.3 (ابعاد (میلی متر)گرم 460وزن خالص

  • English

    Shortwava Transmitter ...........................................................................Page 3

    AVC509 .....................................................................................................Page 4  

    AVC694 (Dome camera) ..........................................................................Page 6

    Microprocessors ........................................................................................Page 7

    CPU operation ................................................................................ Page 8

     

    فارسی

    فرستنده موج کوتاه .......................................................................................... صفحه 10

    AVC509 (فارسی) ........................................................................................ صفحه 11

    AVC694 (دام متحرک) .................................................................................. صفحه 13

    ریزپردازنده‌ ها ................................................................................................. صفحه 14

    عملکرد ریزپردازنده‌ها ...................................................................................... صفحه 15

ماهواره و فرکانس هاي مخابراتي لايه أنيوسفر در فرکانس حدود 30 مگا هرتز به صورت شفاف عمل مي کند. علائم ارسالي بر روي اين فرکانس مستقيما از ميان آن مي گذرد و در فضاي بيرون گم مي شوند. اين فرکانس ها همچنين در خط مستقيم ديد حرکت مي کنند. به اين د

شبکه چيست؟ در ساده ترين مفهوم، شبکه به معناي اتصال کامپيوترها به يکديگر است به نحوي که آنها بتوانند فايلها، چاپگرها، نرم افزارها و ديگر منابع مربوطه را به اشتراک گذارند. مزاياي شبکه هاي کامپيوتري بسيار واضح است: • کاربران مي توانند فايلهاي و پرونده

رايو دريچه و نه صداي آلمان، در گزارشي به تاريخ استفاده از امواج کوتاه راديويي براي پخش برنامه ها پرداخته است. در اين گزارش آمده است که در زمان جنگ جهاني دوم اولين فرستنده هاي توليد کننده پارازيت از سوي مهندسان و کارشناسان فني توليد و از آن براي مقاب

مهندسی برق : هدف: یکی از بهترین تعریف هایی که از مهندسی برق شده است، این است که محور اصلی فعالیت های مهندسی برق، تبدیل یک سیگنال به سیگنال دیگر است. که البته این سیگنال ممکن است شکل موج ولتاژ یا شکل موج جریان و یا ترکیب دیجیتالی یک بخش از اطلاعات باشد. مهندسی برق دارای 4 گرایش است که در زیر بطور اجمالی به بررسی آنها می پردازیم و در قسمت معرفی گرایشها به تفصیل در مورد هر کدام ...

لایه أنیوسفر در فرکانس حدود 30 مگا هرتز به صورت شفاف عمل می کند. علائم ارسالی بر روی این فرکانس مستقیما از میان آن می گذرد و در فضای بیرون گم می شوند. این فرکانس ها همچنین در خط مستقیم دید حرکت می کنند. به این دلایل برای مقاصد ارتباطی آن ها را باید به طریقه های گوناگون به کار گرفت. فرکانسهای 30 تا 300 مگاهرتز بسیار مفید و کارامد هستند چون انتشار آنها با وجود محدود بودن پایدار ...

توان الکتریکی که اغلب به عنوان برق یا الکتریسیته شناخته می شود، شامل تولید و ارایه انرژی الکتریکی به میزان کافی برای راه اندازی لوازم خانگی، تجهیزات اداری، دستگاه های صنعتی و فراهم آوردن انرژی کافی برای روشنایی، پخت و پز، گرمای خانگی و صنعتی و فرایندهای صنعتی بکار می رود. تاریخچه اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیایی ای که در یک پیل الکترولیک از زمانی که الساندرو ولتا ...

RSS 2.0 عمران-معماري خاکبرداري آغاز هر کار ساختماني با خاکبرداري شروع ميشود . لذا آشنايي با انواع خاک براي افراد الزامي است. الف) خاک دستي: گاهي نخاله هاي ساختماني و يا خاکهاي بلا استفاده در

مقدمه: آشنايي با ميکرو کنترلرهاي :AVR ميکرو کنترلر : به آي سي هايي که قابل برنامه ريزي مي باشد و عملکرد آنها از قبل تعيين شده ميکروکنترلرگويند ميکرو کنترل ها داراي ورودي - خروجي و قدرت پردازش مي باشد. بخشهاي مختلف ميکروکنترلر :

بلوتوث یک رشته خصوصیت بی‌سیم است که ارتباطات کوتاه برد بین وسایل مجهز به تراشه‌های کوچک و اختصاصی بلوتوث را تعریف می‌کند. بلوتوث چیست؟ به تازگی پس از یک سمینار عصرانه به خانه بازگشته‌اید. Notebook تان در کیفتان قرار دارد، (Digital Assistant PDA Personal) خود را به کمر بسته‌اید، و تلفن همراهتان در جیب جای دارد.در سمینار امروز یادداشت‌هائی را در Notebook خود نوشته‌اید. همین که به ...

تاریخچه رادیو: نخستین فرستنده بی سیم موج بلند تهران و شهرهای تبریز، مشهد، کرمان، باختران و خرمشهر در ساعت 3 بعد از ظهر روز ششم اردیبهشت ماه سال 1305 شروع بکار کرد. فرستنده تهران 20 کیلو وات قدرت داشت و طول دکل آن 120 متر بود. یکسال پیش از تأسیس این ایستگاه فرستنده بمنظور تعلیم و تجهیز نیروی انسانی مورد نیاز در وزارت جنگ، «مدرسه بی سیم قشون کل» گشوده شد. با گسترش فعالیت ها و ...

ثبت سفارش
تعداد
عنوان محصول