دانلود مقاله تیریستور

Word 394 KB 30742 31
مشخص نشده مشخص نشده الکترونیک - برق - مخابرات
قیمت قدیم:۱۴,۸۵۰ تومان
قیمت: ۹,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • 1-1-تیریستور (یا یکسو کننده قابل کنترل p-n-p-n )

    تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت[1] است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به پایانه های آند و دریچه ولتاژ مثبت مناسبی به کاتد اعمال نشده است در حالت قطع (حالت ولتاژ مسدود کننده ) باقی می ماند و امپدانس بینهایتی از خود نشان خواهد داد . در حالت وصل و عبور جریان بدون احتیاج به علامت[2] (یا ولتاژ) بیشتری روی دریچه به عبور جریان ادامه خواهد داد . در این حالت به طور ایده آل هیچ امپدانسی در مسیر جریان از خود نشان نمی دهد . برای قطع کلید و یا برگرداندن تیریستور به حالت خاموشی بایستی روی دریچه علامت و یا ولتاژی نباشد و جریان در مسیر آند به کاتد به صفر تقلیل یابد . تیریستور عبور جریان را فقط در یک جهت امکان پذیر می سازد .

    اگر به پایانه های تیریستور ولتاژ بایاس خارجی اعمال نشود ، حاملهای اکثریت در هر لایه تا زمانی که ولتاژ الکتروستاتیکی داخلی[3] به وجود آمده از انتشار بیشتر حاملها جلوگیری کند ، منتشر می شوند . اما بعضی از حاملهای اکثریت انرژی کافی جهت عبور از سد تولید شده توسط میدان الکتریکی ترمزکن[4] هر اتصال را دارد . این حاملها پس از عبور ، تبدیل به حاملهای اقلیت می شوند و می توانند با حاملهای اکثریت ترکیب شوند . حاملهای اقلیت هر لایه نیز می توانند توسط میدان الکتریکی ثابتی در هر یک از اتصالها شتابدار شوند ، ولی چون در این حالت (از خارج ولتاژی اعمال نمی شود) مدار خارجی وجود ندارد مجموع جریانهای حاملهای اقلیت و اکثریت بایستی صفر شود .

    حال اگر یک ولتاژ بایاس با یک مدار خارجی برای حمل جریانهای داخلی منظور شود ، این جریان ها شامل قسمتهای زیر خواهند
    بود.

    جریان  ناشی از :

    1-عبور حامل های اکثریت (حفره ها ) از اتصال

    2-عبور حاملهای اقلیت از اتصال  

    3-حفره های تزریق شده به اتصال  که از طریق ناحیه n اشاعه
    می یابند اتصال  را قطع می کند .

    4-حامل های اقلیت از اتصال  که از طریق ناحیه n اشاعه یافته و از اتصال  عبور کرده است . عیناً  نیز از شش قسمت و  از چهار قسمت تشکیل خواهد یافت .

    برای تشریح اصول کار تیریستور از دو روش متشابه[5] مدلهای دیودی و یا دو ترانزیستوری می توان استفاده کرد .

     

    (الف) مدل های دیودی تیریستور

    تیریستور که یک نیمه هادی سه اتصالی ، شبیه سه دیودی است که به طور سری اتصال یافته اند . اگر دریچه بایاس نشود ولی به دو سر آند و کاتد ولتاژ بایاسی اعمال شود این ولتاژ هر قطبیتی[6] که داشته باشد همواره حداقل یک اتصال معکوس بایاس شده ، وجود خواهد داشت تا از هدایت تیریستور جلوگیری کند .

    اگر کاتد توسط ولتاژ منبع تغذیه (نسبت به آند ) منفی شود و دریچه نسبت به کاتد به طور مثبت بایاس شود لایه p دریچه توسط کاتد از الکترون لبریز می شود و خاصیت خودش را به عنوان لایه p از دست می دهد . در نتیجه تیریستور به دیود هدایتی معادلی تبدیل می شود .

     

    (ب)مدل دو ترانزیستوری تیریستور

    پولک p-n-p-n را می توان به صورت دو ترانزیستور با دو ناحیه پایه در نظر گرفت . کلکتور ترانزیستور n-p-n ، جریان محرکی برای پایه ترانزیستور p-n-p که جریان کلکتورش اضافه جریان دریچه به مثابه جریان محرک[7] پایه ترانزیستور n-p-n است ، مهیا کند .

    برای روشن کردن تریستور جریان دریچه به جزء خیلی حساس ترانزیستور n-p-n از اتصال p-n-p-n اعمال می شود . اولین ده درصد افزایش جریان آند ، در اصل جریان کلکتور ترانزیستور n-p-n است . پایه n ترانزیستور p-n-p توسط جریان کلکتور ترانزیستور n-p-n باردار می شود . در نتیجه فیدبک مثبتی توسط جریان کلکتور ترانزیستور p-n-p به منظور افزایش بارهای ایجاد شده در پایه p ترانزیستور n-p-n دایر می شود . به این ترتیب جریان تیریستور شروع به افزایش می کند ، به سرعت به مقدار اشباع می رسد و جریان تیریستور فقط توسط امپدانس بار محدود
    می شود .

    بهتر است به منظور تشریح مشخصه و خواص تیریستور حالتهای مختلف آن را (از نظر بایاس ) مورد بررسی قرار دهیم .

     

    1-2-مشخصات تیریستور

    برای اینکه بتوان وسیله های الکترونیکی را با کیفیت کافی مورد استفاده قرار داد و از آنها محافظت کرد بایستی مشخصات و خواص آنها کاملا معلوم شوند . مشخصات تیریستور را می توان با ملاحظه سه حالت مختلف اصلی این وسیله تعیین کرد :

    شرایط بایاس معکوس[8]

    بایاس مستقیم و مسدود[9]

    بایاس مستقیم و هدایت[10]

    1-2-1-بایاس معکوس تیریستور (کاتد نسبت به آند مثبت)

    در این حالت اتصالات اول و سوم به طور معکوس  اتصال دوم به طور مستقیم بایاس می شوند و درست مثل یک اتصال p-n مقدار کمی جریان نشتی از کاتد به آند عبور خواهد کرد .

    اعمال ولتاژ محرک مثبتی به دریچه تیریستور در حالی که آند هنوز منفی است سبب می شود که تیریستور رفتاری شبیه ترانزیستور داشته باشد و جریان معکوس نشتی آند تا مقدار قابل ملاحظه مقایسه ای با جریان دریچه افزایش یابد ، از این رهگذر اتلاف قدرت قابل ملاحظه ای در تیریستور وقوع خواهد یافت . زیاد گرم شدن اتصال می تواند سبب افسار گسیختگی حرارتی[11] شود .

    جریان آند با جریان اشباع معکوس اتصال اول به اضافه کسری از

    جریان دریچه برابر است . جریان اشباع بستگی به درجه حرارت دارد . بنابراین بالا رفتن درجه حرارت اتصال باعث افزایش جریان اشباع می شود که آن نیز موجب گرم شدن بیشتر اتصال می شود . ولتاژ بیشینه دریچه در شرایط بایاس معکوس غالباً توسط سازندگان برای محدود کردن اثر حرارت معین می شود .

    افزایش ولتاژ بایاس معکوس باعث پهن شدن لایه های تهی اتصالات اول و سوم می شود . اتصال اول معمولاً بخش اعظم ولتاژ آند به کاتد را مسدود می کند ، لذا منطقه تهی این اتصال غالباً پهن است . به خاطر اینکه ولتاژ مسیر سوراخ کنی توسط تماس لایه های تهی اتصالات  و  به وجود نیاید لایه n وسطی را کمی  پهن می سازند .

     

    1-3-2-تیریستور بایاس مستقیم و مسدود (آند نسبت به کاتد مثبت)

    اتصالات اول و سوم بایاس مستقیم و اتصال دوم بایاس معکوس
    می شود . جریان آند در خلال مدتی که یک اتصال p-n بایاس معکوس وجود دارد ، خیلی کم است و مقدارش برابر با جریان اشباع اتصال دوم به اضافه قسمتی از جریان دریچه است . جریان دریچه در طول این شیوه عمل با این که خودش بایستی کوچک باشد جریان آند را افزایش می دهد .

     

     

    1-2-3-تیریستور بایاس مستقیم و هدایت

    چهار روش برای روشن کردن تیریستور وجود دارد و به محض اینکه هدایت شروع شد امپدانس صفر در مسیر عبور جریان از خود نشان می دهد . همان طوری که از مشخصه کلی ولتاژ جریان یک تریستور ، در طول زمانی که تریستور هدایت می کند افت ولتاژ بین آند و کاتد در حدود 1 تا 5/1 ولت است و اصولاً مستقل از جریان آند است . چهار روش راه اندازی[12] تیریستور وجود دارد : 1) فعال سازی نوری  2) علائم الکتریکی   3)ولتاژ بایاس مستقیم با دامنه زیاد  و 4)ولتاژ بایاس مستقیم با میزان صعود سریع وجود دارد . روش دوم ، یعنی راه اندازی توسط علائم الکتریکی مهمترین و معمول ترین روش است ، در حالی که آخرین روش به علت طبیعت مزاحمی[13] که دارد قابل اجتناب است .

     

    (الف) روشن کردن[14] توسط نور

    یک شعاع نوری که از دریچه به سوی اتصال کاتد ،  جهت داده
    می شود ، می تواند انرژی کافی برای شکستن پیوندهای الکترونیکی در نیمه هادی را تولید و حاملهای اقلیت اضافی لازم جهت وصل کلید یا روشن کردن تریستور را مهیا کند .

     

    (ب) روشن کردن توسط علائم الکتریکی اعمال شده به دریچه :

    اگر تریستور در بایاس مستقیم قرار داشته باشد ، تزریق جریان به دریچه منجر به روشن شدن تریستور می گردد . این کار با اعمال پالس مثبت مناسب بین گیت و کاتد عملی خواهد شد . ، با افزایش جریان دریچه ، ولتاژ سد کنندگی مستقیم کاهش پیدا می کند .

    تاخیر زمانی بین لحظه اعمال سیگنال به دریچه و لحظه هدایت تیریستور را زمان روشن شدن ton[15] می نامیم . ton بنا به تعریف برابر است با فاصله زمانی بین لحظه ای که جریان دریچه 10% جربان حالت پایدار دریچه () و جریان تیریستور 90% جریان حالت پایدار روشن شدن خود () می رسد .

    ton مجموع زمان تاخیر[16] td و زمان صعود[17] tr  می باشد . td بنا به تعریف فاصله زمانی بین لحظاتی است که جریان دریچه به 10% مقدار نهایی خود و جریان حالت روشن تیریستور به 10 مقدار نهایی خود () می رسد . ti نیز فاصله زمانی مورد نیاز است تا جریان آند از 10% جریان حالت روشن به 90%  جریان حالت روشن برسد .

    در طراحی مدار کنترل دریچه باید نکات زیر را رعایت کرد :

    1-پس از روشن شدن تیریستور باید سیگنال دریچه را از روی دریچه برداریم ادامه اعمال سیگنال ، تلفات توان را در پیوند دریچه افزایش می دهد .

    2-پهنای پالس دریچه tg باید طولانی تر از زمان رسیدن جریان آند به جریان نگهدارنده  باشد . در عمل پهنای پالس دریچه را بیشتر از زمان روشن شدن تیریستور ton در نظر می گیرند .

     

تيريستور (يا يکسو کننده قابل کنترل p-n-p-n ) تيريستور يک وسيله نيمه هادي چهار لايه سه اتصالي با سه خروجي است و از لايه هاي نوع p و n سيليکوني که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحيه p انتهايي آند ، ناحيه n انتهاي کاتد و ناحيه p داخل

1-1-تیریستور (یا یکسو کننده قابل کنترل p-n-p-n ) تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت[1] است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به ...

از سالها پیش ، نیاز به کنترل قدرت الکتریکی در سیستم های محرک موتورهای الکتریکی و کنترل کننده های صنعتی احساس می شد . این نیاز ، در ابتدا منجر به ظهور سیستم وارد - لئونارد شد که از آن می توان ولتاژ dc متغیری برای کنترل محرکهای موتورهای dc به دست آورد . الکترونیک قدرت ، انقلابی در مفهوم کنترل قدرت ، برای تبدیل قدرت و کنترل محرکهای موتورهای الکتریکی ، به وجود آورده است . الکترونیک ...

همانطور که کرارا در کليه جزوات تحريک عنوان شده در ژنراتورهاي سنکرون جهت توليد الکتريسيته لازم است يک ميدان مغناطيسي دوار داشته باشيم بدين لحاظ مي بايستي بتوانيم جراين DC مناسبي براي توليد اين ميدان به روتور ژنراتور اعمال کنيم. اين مولد DC بايستي

در حالت ایده آل دیود نباید هیچ زمانی بازیابی معکوسی داشته باشد که هزینه ساخت دیود را افزایش می دهد . در بسیاری از کاربردهای اثرات زمان بازیابی معکوس چندان اهمیت ندارند و می توان از دیود از دیودهای ارزان استفاده کرد . بسته به مشخصه های بازیابی و روشهای ساخت ، دیودهای قدرت را به سه گروه می توان تقسیم کرد . مشخصه ها و محدودیت های عملی هر گروه کاربردشان را مشخص می کند . دیود های ...

زمستان 87 مقدمه دیود یک قطعه ‌الکترونیکی است که ‌از به هم چسباندن دو نوع ماده n و p (هر دو از یک جنس ، سیلیسیم یا ژرمانیم) ساخته می‌شود. چون دیود یک قطعه دو پایانه ‌است، اعمال ولتاژ در دو سر پایانه‌هایش سه حالت را پیش می‌آورد.دیود بی بایاس یا بدون تغذیه که ولتاژ دو سر دیود برابر صفر است و جریان خالص بار در هر جهت برابر صفر است.بایاس مستقیم یا تغذیه مستقیم که ولتاژ دو سر دیود ...

تولید ماورای صوت مقدمه علم صوت به معنی وسیع کلمه تولید ، تراگسیل و دریافت انرژی بصورت ارتعاش در ماده است. اگر اتمها و مولکولهای شاره یا جامد از اوضاع طبیعی خود تغییر مکان یابند، نیروی الاستیک در آن پدید می‌گردد، که مربوط به سختی جسم است و می‌خواهد جسم را به حالت نخست باز گرداند، این را نیروی برگرداننده گویند. تأثیر این نیروی الاستیک برگرداننده توأم با خاصیت اینرسی دستگاه ، ماده ...

مقدمه بعضی از تجهیزات الکترونیکی نیاز به منابع تغذیه با ولتاژ و جریان بالا دارند. بدین منظور باید ولتاژ AC شهر توسط ترانسفورماتور کاهنده به ولتاژ پایینتر تبدیل و سپس یکسوسازی شده و به وسیله خازن و سلف صاف و DC شود. تا سال 1972 ، منابع تغذیه خطی برای بیشتر دستگاههای الکترونیکی مناسب بودند. اما با توسعه کاربرد مدارهای مجتمع ، لازم شد که خروجی این مدارها در برابر تغییرات جریان و یا ...

ترانزیستور قابل تحریک PNPN بود که تریستور یا همون یکسو کننده کنترل شونده سیلیکونی SCR نام گرفت. از زمانی که اولین تریستور ازنوع یکسو کننده کنترل شونده سیلیکونی در اواخر سال 1957 اختراع شد تا زمان حاضر،پیشرفت های زیادی در الکترونیک قدرت رخ داده است. تا سال1970 تریستورهای معمولی منحصرا برای کنترل توان در کاربردهای صنعتی بکار میرفتند. از سال 1970 به بعد انواع مختلفی از عناصر نیمه ...

شرح بلوک دیاگرام: منبع تغذیه که در این تلویزیون استفاده می شود از نوع (switch Regulator) بوده که دارای خروجیهای مستقیم 125و33و16و8و5 می باشد از این ولتاژها جهت تغذیه قسمت های مختلف تلویزیون استفاده می شود. امواج ورودی فرکانس رادیویی (RF) در باندهای (UHF,VHF) از طریق آنتن وارد تیونر می شود سیگنال RF در فیوز تبدیل به سیگنال های IF صوت و تصویر شده و سیگنال های IF پس از عبور از ...

ثبت سفارش
تعداد
عنوان محصول