انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیا اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام میداد .
اما بزودی مجبور شد وسیله شمارش دقیقتری بوجود آورد .
لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود.
این دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود.
سومری ها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند.
آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند.
طغیان رود نیل هر سال حدود و ثغور زمین های زراعتی این قوم را محو می کرد.
احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام ساده هندسی گردید.
همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی مشهور می باشد.
قدیمی ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله درباره علم حساب و مسائل حساب مقدماتی می باشد، از آن جمله رساله پاپیروس آهس است که در سال 1868 توسط ایسنلر مصرشان مشهور ترجمه شد.
سایر تمدن های شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.
قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آشور، یونانیان از روی مقدمات پراکنده و بی شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می نمود.
نخستین دانشمند معروف یونانی طالس ملطلی (639- 548ق.م) است که در پیداش علوم نقش مهمی بعهده داشته و می توان وی را موجد علوم فیزیک، نجوم و هندسه «تشابه» به او کاملا بی اساس است.
در اوایل قرن ششم ق.م فیثاغورث (572-500قبل از میلاد) از اهالی ساموس یونان کم کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت.
فیثاغورث عدد را به خاطر هم آهنگی و نظمی که دارد اساس و مبدأ همه چیز می پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می توان بیان نمود.
پس از فیثاغورث باید از زنون فیلسوف و ریاضیادان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم.
کاربرد ریاضی در مکانیک:
کاربرد ریاضی در علوم مختلف انکارناپذیر است.
برای مثال مبحث آنالیز تابعی در مکانیک کوانتومی، کاربرد بسیاری زیادی دارد و یا در بیشتر رشتههای مهندسی معادله «لاپ لاسی» که یک معادله ریاضی است، مورد استفاده قرار میگیرد.
در جامعهشناسی نیز نظریه احتمال و نظریه گروهها نقش بسیار مهمی ایفا میکند.
در کل باید گفت که همه صنایع ،زیر ساخت ریاضی دارند و به همین دلیل در همه مراکز صنعتی و تحقیقاتی دنیا، ریاضیدانها در کنار مهندسان و دانشمندان سایر علوم حضوری فعال دارند و آنچه در نهایت ارائه میشود، نتیجه کار تیمی آنهاست.»
دکتر ریاضی از اساتید دانشگاه در مورد فرصتهای شغلی موجود در ایران میگوید:
اگر در جامعه ما مشاغل جنبه علمی داشته باشند، قطعا به تعداد قابل توجهی ریاضیدان نیاز خواهیم داشت چون یک ریاضیدان میتواند مشکلات را به روش علمی حل کند.
البته این به آن معنا نیست که در حال حاضر هیچ فرصت شغلی برای یک ریاضیدان وجود ندارد اما باید حضور ریاضیدانها در مراکز تحقیقاتی و صنعتی پررنگتر باشد.»
هرچقدر که شغل یک فرد تخصصیتر شود، میزان ریاضیاتی که لازم دارد، بیشتر میگردد.
برای مثال یک مهندس الکترونیک از آنالیز تابعی و فرآیندهای تصادفی استفاده میکند و یا یک برنامهریز پروژههای اقتصادی از مطالب پیشرفته آماری مانند سریهای زمانی ، به عنوان ابزار کار یاری میگیرد.
به همین دلیل امروزه تربیت متخصصان علم ریاضی، یعنی افرادی که قادر هستند ریاضیات مورد نیاز را آموزش داده و یا تولید کنند، اهمیت بسیار زیادی دارد.
چرا که لازمه پیشرفت در تکنولوژی ، توجه به دانش ریاضی میباشد.
کاربرد دیگری از ریاضی :
راز مکانیک تکثیر میکروب ها کشف شد
دانشمندان آمریکایی مدل ریاضی جدیدی را برای حل مسئله مکانیک تکثیر میکروب ها ارائه کرده اند که براساس آن می توان توضیح داد که باکتری ها چگونه خود را به دو تکه تکثیر می کنند.
به گزارش خبرگزاری مهر، محققان دانشگاه جان هاپکینز بالتیمر با بررسی باکتری "اشیروشیراکولا" که در دستگاه گوارش انسان زندگی می کند و در دسته باکتری های مفید است، توانستند معمای چگونگی تکثیر میکروب ها را در یک مدل جدید ریاضی شرح دهند.
کاربرد مثلث در موسیقی :
مثلث از ابتدایی ترین اشکال هندسی بوده که انسانها در هنر از آن استفاده میکردند، بدون شک اولین نوع از انواع مثلث هم که در هنر از آن استفاده شده مثلث متساول الاضلاع بوده است.
اهرام مصر نمونه بسیاری قدیمی (حدود 2800 سال پیش از میلاد) از کاربری مثلت در هنر معماری قدیم بوده است.
نمونه های دیگر از استفاده از مثلث در هنر تمدن های قدیم را می تواند در کاشی کاری های دیواره معابد Pompeii در نپال نیز مشاهده کرد.
معروف است تالس (640-550 سال پیش از میلاد) که پدر ریاضیات، نجوم و فلسفه یونان باستان بوده از شاگردان خود می خواهد که به مصر سفر کنند تا از پیشرفت علوم در آن تمدن اطلاعات لازم را کسب کنند و فیثاغورث (Pythagoras) از اولین افرادی بوده که این دستور را می پذیرد و به مصر سفر میکند.
فیثاغورث از بنیانگذاران علمی موسیقی در جهان بوده و اغلب از هندسه برای مدل کردن استفاده می کرده، می خواهیم با استفاده از تجربیات او سلسه مطالبی را پیرامون ارتباط موسیقی با علوم هندسه، فیزیک و ریاضی آغاز کنیم.
موسیقی را می توانیم به روشهای مختلف مدل کنیم برای شروع کار ساده ترین روش را انتخاب میکنم که عبارت است از مدل کردن عمودی موسیقی یاهمان هارمونی.
این روش مدل کردن به موسیقیدان ها کمک می کند تا هنگام فکر یا گوش کردن به هارمونی تصویر بهتری از نت های موسیقی داشته باشند بخصوص برای نوازندگان سازغیر از پیانو.
یک دایره در نظر بگیرید و آنرا به دوازده قسمت مساوی (یک اکتاو کروماتیک) تقسیم کنید و نت ها را به ترتیب روی هر قسمت بنویسد مانند شکل.
یکی از ساده ترین اشکال هندسی که در این دایره تقسیم شده می توان ساخت مثلت متساوی الاضلاع می باشد.
که اگر آنرا بسازید و به آن دقت کنید تفسیر موسیقی آن یک آکورد افزوده خواهد بود.
حتما" شنید که آکوردهای افزوده جدای از اینکه معکوس باشند یا نه چهار حالت بیشتر نیستند که دایره فوق این موضوع را بسادگی نمایش میدهد چرا که اگر راس بالایی مثلث را در جهت عقربه های ساعت حرکت دهیم تا رسیدن به نت E و انطباق دوباره روی خود، می تواند سه حالت دیگر را به خود بگیرد.
همچنین به وضوح در شکل می توان دید که یک آکورد افزوده از سه فاصله (که در اینجا هرکدام یک ضلع مثلث هستند) یکسان معادل 4 نیم پرده تشکیل شده است.
مثلث متساول الاضلاع معادل یک آکورد افزوده
شما باز هم می توانید مثلث های دیگری درست کنید.
به شکل بعدی نگاه کنید که آکوردهای دو ماژور و لا مینور را نمایش میدهد.
این دو مثلث (آکورد) خصوصیات جالبی دارند اولا" اضلاع آنها باهم برابر است، ثانیا" نسبت به خطی که از D کشیده میشود و به G# خطم میشود متقارن می باشند، حتما" می دانید که مینور نسبی گام دو ماژور، لامینور می باشد.
به این طریق شما می توانید یک روش ساده برای پیدا کردن گامهای مینور و ماژور نسبی پیدا کنید، هر چند اینکار در پیانو بخاطر وضوح دیداری که چیدمان نت ها وجود دارد ساده می باشد.
شما باز هم می توانید مثلث های دیگری درست کنید.
این دو مثلث (آکورد) خصوصیات جالبی دارند اولا" اضلاع آنها باهم برابر است، ثانیا" نسبت به خطی که از D کشیده میشود و به G# خطم میشود متقارن می باشند، حتما" می دانید که مینور نسبی گام دو ماژور، لامینور می باشد.
به این طریق شما می توانید یک روش ساده برای پیدا کردن گامهای مینور و ماژور نسبی پیدا کنید، هر چند اینکار در پیانو بخاطر وضوح دیداری که چیدمان نت ها وجود دارد ساده می باشد.
مثلث های متساوی الساقین هم جالب هستند یکی از آنها آکورد sus2 را تشکیل میدهد که در شکل مشاهده میکنید و همچنین میتوانید آکوردهای کاسته را نیز باز با یک مثلث متساوی الساقین درست کنید.
اگر دقت کنید این مثلث متساوی الساقین حالت آکورد sus2 برای C و حالت آکورد sus4 برای G دارد.
بنابراین می توان به ارتباط نزدیک آکوردهای sus در حالت های 2 و 4 برای فاصله های پنجم با یکدیگر پی برد.
این نکته هم جالب خواهد بود اگر شما راس D در این مثلث را نسبت به راس C قرینه کنید به آکورد sus2 دیگری می رسید که یک پرده عقب تر است آکورد Csus4 قرار دارد.
آکوردهای بزرگ، کوچک، sus2 و sus4 شما می توانید دامنه مدل کردن را ادامه دهید و راجع به سایر مثلث ها فکر کنید، همچنین می توانید آکوردهای چهار صدایی را با انواع چهار ضلعی ها مدل کنید.
سئوالی که پیش می آید این است که آیا هستند افرادی که با شنیدن موسیقی این اشکال در ذهن آنها نقش ببندد؟
نقش ریاضیات در فناوری نانو : دانش ریاضیات به عنوان خط مقدم جبهه علم مطرح است.
ویژگی بدیهی ریاضیات در علوم نانو «محاسبات علمی» است.
مدلهای ریاضی، ستونهای راهگشا به سوی بنیاد علم و تئوریهای پیش بین هستند.
مدلها، رابطهایی بنیادین در پروسههای علمی هستند.
یک مدل ریاضی بر پایه فرمولاسیون معادلات و نامعادلات اصول بنیادین استوار است و مدل درگیر با درک کامل پیچیدگیهای مسأله نظیر، جرم، اندازه حرکت و توازن انرژی است.
در هر سیستم فیزیکی واقعی تقریب اجازه داده میشود، تا مدل را در یک قالب قابل حل عرضه کنند.
اکنون میتوان مدل را یا به صورت «تحلیلی» و یا بصورت «عددی» حل کرد.
در این حالت مدلسازی ریاضی یک پروسه پیچیده است،زیرا میبایستی دقت و کارآیی را همزمان نشان دهد.
الگوریتمهای اصلی در حوزههای ریاضیات کاربردی و محاسباتی، علوم کامپیوتر، فیزیک آماری، نقش مرکزی و میانبرساز را در حوزه نانو بر عهده خواهند داشت.
در اینجا برخی از اثرات ریاضیات را در فناوری نانو میبینیم : روشهای انتگرال گیری سریع و چند قطبی سریع: اساسی و الزامی به منظور طراحی کدهای مدار (White, Aluru, Senturia) و انتگرال گیری به روش Ewala در کد نویسی در حوزههای شیمی کوانتوم و شیمی مولکولی (Darden 1999) روشهای« تجزیه حوزه»، مورد استفاده در شبیهسازی گسترش فیلم تا رسیدن به وضوح نانوئی لایههای پیشرو مولکولی با مکانیک سیالات پیوسته در مقیاسهای ماکروسکوپیک (Hadjiconstantinou) تسریع روشهای شبیه سازی دینامیک مولکولی (Voter 1997) روشهای بهبود مشبندی تطبیق پذیر: کلید روشهای شبیه پیوسته که ترکیب کننده مقیاسهای ماکروئی، مزوئی، اتمی ومدلهای مکانیک کوانتوم از طریق یک ابزار محاسباتی است (Tadmor, Philips, Ortiz) روشهای پیگردی فصل مشترک: نظیر روش نشاندن مرحلهای Sethian, Osher که در کدهای قلم زنی و رسوبگیری جهت طراحی شبه رساناها مؤثرند (Adalsteinsson, Sethian) و نیز در کدگذاری به منظور رشد هم بافت ها (Caflisch) روشهای حداقل کردن انرژی هم بسته با روشهای بهینه سازی غیر خطی (المانی کلیدی برای کد کردن پروتیئنها) (Pierce& Giles) روشهای کنترل (مؤثر در مدلسازی رشد لایه نازکها (Caflisch)) روشهای چند شبکهبندی که امروزه در محاسبات ساختار الکترونی و سیالات ماکرومولکولی چند مقیاسی بکار گرفته شده است.
روشهای ساختار الکترونی پیشرفته ، به منظور هدایت پژوهشها به سمت ابر مولکولها (Lee & Head – Gordon) براساس گزارش ساینس دیلی، وقتی این میکروب های تک سلولی تکثیر را آغاز می کنند، به سبب ساختاری که Z-ring نامیده می شود از یک منبع ناشناخته یک سیگنال دریافت می کنند.
ساختار Z-ring بدن عصاگونه باکتری را به دو تکه مساوی میکروبی تقسیم می کند که این دوتکه سرانجام از هم جدا می شوند.
محققان دانشگاه جان هاپکینز برای شرح این فرایند یک ابزار ریاضی را توسعه داده اند که نیروی مکانیکی پرقدرتی را کهZ-ring در موقع جداسازی این میکروب ها بکار می گیرد محاسبه می کند.
این محاسبه نشان می دهد که میکروب ها چگونه تکثیر می شوند.
همچنین این مدل می تواند منجر به توسعه نوع جدیدی از آنتی بیوتیک هایی شود که می توانند در غیرفعال کردن Z-ring برای ممانعت از تکثیر باکتریهای مضر مورد استفاده قرار گیرند.
در این خصوص این دانشمندان اظهار داشتند:" این نوع باکتری در بدن انسان پیدا می شود.
درک چگونگی مکانیک تکثیر این ارگانیسم می تواند به ما در کشف راه های جدیدی برای درمان باکتری های بیماریزا کمک کند." علوم نانو و فناوری نانو بیانگر رهگذری به سوی دنیایی جدید هستند.
سفر به اعماق سرزمین اتمها و مولکولها نوید دهنده اثراث اجتماعی شگفتانگیزی است: در علوم بنیادین، در فناوریهای نو، در طراحی مهندسی و تولیدات، در پزشکی و سلامت و در آموزش.
پیشبینیهای گسترده در حوزه کشفیات جدید، چالشها، درک مفاهیم، حتی هنوز فرم و محتوای موضوع، مهآلود و اسرارآمیز است.
این مقاله میکوشد تا چالشهای دنیای ریاضیات را در مواجهه با دنیای شگفتانگیز نانو بررسی کند.
به عبارت دیگر، ریاضیات در معماری پازل نانو چه نقشیخواهدداشت: همگان بر این نکته توافق دارند که پیشرفتهای بزرگ، مستلزم تعامل میان مهندسان، ژنتیستها، شیمیدانان، فیزیکدانان، داروسازان، ریاضیدانان و علوم رایانه ای ها است.
شکاف میان علوم و فناوری، میان آموزش و پژوهش، میان دانشگاه و صنعت، میان صنعت و بازار بر مجموعه تأثیرگذار خواهد بود.
دلایل کافی مبتنی بر فصل مشترک میان نظامهای کلاسیک و فرهنگ ها موجود است.
این انقلاب علمی و فناورانه، منحصر به فرد است.
این بدین معنی است که میبایستی نه تنها در بعد علمی، که در سایر ابعاد، نیز زیرساختهای بنیادین با حداکثر انعطاف پذیری در برابر تغییرات را پیشگویی و پیشبینی کنیم.
دانش ریاضیات به عنوان خط مقدم جبهه علم مطرح است.
محاسبات علمی در فناوریی که به عنوان فناوری انقلابی مطرح شده است.
محاسبات علمی در طول، تفسیر آزمایشات، تهیه پیشبینی در مقیاس اتمی و مولکولی بر پایه تئوری کوانتومی و تئوریهای اتمی است.
همانگونه که ریاضیات زبان علم است، محاسبات، ابزاری عمومی علم و کاتالیزوری برای تعاملات عمیقتر میان ریاضیات و علوم است.
یک تیم محاسبات، درباره مدلشان و اثر محاسباتشان و تطبیقپذیری آن با واقعیت، به بحث میپردازند.
«محاسبات» رابطی میان آزمایش و تئوری است.
یک تئوری و یک مدل ریاضی، پیش نیاز محاسبات است و یک آزمایش تنها اعتبار بخش هر نوع تئوری، مدل و محاسبات است.
مدلهای ریاضی، ستونهای راهگشا به سوی بنیاد علم و تئوریهای پیش بین هستند.
مدلها، رابطهایی بنیادین در پروسههای علمی هستند و اغلب اوقات در سیستمهای آموزشی به فاز مدلسازی و محاسبات، تأکید کافی نمیشود.
در علوم نانو و فناوری نانو، مدلسازی نقش محوری را بر عهده دارد، بویژه وقتی که بخواهیم عملکرد ماکروسکوپی مواد را از طریق طراحی در مقیاس اتمی و مولکولی کنترل کنیم، آن هم در شرایطی که درجات آزادی زیاد باشد.
مدلسازی ریاضی یک ضرورت در این فضای مه آلود است.
تفسیر دادههای آزمایشگاهی یک ضروت حتمی است.
همچنین برای هدایت، تفسیر، بهینه سازی، توجیه رفتارهای آزمایشگاهی، مدلسازی ریاضی ضرورت مییابد.
یک مدل مؤثر، راه رسیدن به تولیدات جدید، درک جدید رفتارشناسی، را کوتاه میکند و تصحیح گر هوشمندی است که از نتایج گذشته درس میگیرد .مدلسازی نه تنها ویژگی منحصر به فرد ریاضیات است بلکه پلی بسوی فرهنگهای مختلف علمی است.
تئوری در هر مرحله از توسعه علم، نقش محوری دارد، ارزیابی حساسیت مدل به شرایط پروسههای فیزیکی ، و حصول اطمینان از اینکه معادلات و الگوریتمهای محاسباتی با شرایط کنترل آزمایشگاهی سازگارند، از چالشهای مهم است.
تئوری نهایتاً بسوی تعریف نتایج و درک فیزیکی سیستم، میل خواهد کرد و اغلب اوقات ریاضیات جدیدی لازم نیست تا به منظور رسیدن به درک رفتار، ساخته شود.
عبور از تئوریهای موجود ارزشمند است و اغلب نیز اتفاق میافتد.
زمانی مدلها، مشابه سیستمهای شناخته شده هستند که دقت ریاضی بالایی را داشته باشند اما در جهان شگفت انگیز نانو، مدلهای مختلف و جدید، چالشهای جدی را در دانش ریاضیات پدید میآورند.
تئوریهای جدید در مقیاسهای زمانی غیر قابل پیشگوئی اتفاق میافتند و تئوریهای قدرتمند در قالبهای عمیق شکل میگیرند.
میانبرهای اساسی لازم است تا شبیهسازی صورت گیرد: طراحی در مقیاس اتمی و مولکولی، کنترل و بهینه سازی عملکرد مواد و ابزار آلات، و کارآیی شبیهسازی رفتار طبیعی، از مهمترین چالشها است.
این چالشها نوید دهنده برهم کنشهای کامل میان حوزههای مختلف ریاضی خواهد بود.آثار اجتماعی این چالشها زیاد و متنوع خواهد بود.
منافع حاصل از مشغولیت ریاضیدانان فعال، توازن با چالشهای اصلی در زمینه رشد زیرساختهای ریاضیات، تغییرات در ساختار آموزش ریاضیات، از جمله آثار ورود ریاضیات به دنیای شگفت انگیز نانو خواهد بود.
جامعه ریاضی میبایستی اصلاح شود: تئوریهای بنیادین، ریاضیات میان رشتهای و ریاضیات محاسباتی و آموزش ریاضیات.
ریاضیات چه حوزههایی را در بر خواهد گرفت؟
الگوریتمهای اصلی در حوزههای ریاضیات کاربردی و محاسباتی، علوم کامپیوتر، فیزیک آماری، نقش مرکزی و میان بر ساز را در حوزه نانو بر عهده خواهند داشت.
برای روشن شدن موضوع برخی از اثرات ریاضیات را در فرهنگ نانو بررسی میکنیم: ـ روشهای انتگرال گیری سریع و چند قطبی سریع: اساسی و الزامی به منظور طراحی کدهای مدار (White, Aluru, Senturia) و انتگرال گیری به روش Ewala در کد نویسی در حوزههای شیمی کوانتوم و شیمی مولکولی)Darden ۱۹۹۹( - روشهای« تجزیه حوزه»، مورد استفاده در شبیهسازی گسترش فیلم تا رسیدن به وضوح نانوئی لایههای پیشرو مولکولی با مکانیک سیالات پیوسته در مقیاسهای ماکروسکوپیک (Hadjiconstantinou) ـ تسریع روشهای شبیه سازی دینامیک مولکولی (Voter ۱۹۹۷) ـ روشهای بهبود مشبندی تطبیق پذیر: کلید روشهای شبیه پیوسته که ترکیب کننده مقیاسهای ماکروئی، مزوئی، اتمی ومدلهای مکانیک کوانتوم از طریق یک ابزار محاسباتی است (Tadmor, (Philips, Ortiz) ـ روشهای پیگردی فصل مشترک: نظیر روش نشاندن مرحلهای Sethian, Osher که در کدهای قلم زنی و رسوبگیری جهت طراحی شبه رساناها مؤثرند (Adalsteinsson, Sethian) و نیز در کدگذاری به منظور رشد هم بافت ها (Caflisch) ـ روشهای حداقل کردن انرژی هم بسته با روشهای بهینه سازی غیر خطی (المانی کلیدی برای کد کردن پروتیئنها) (Pierce& Giles) ـ روشهای کنترل مؤثر در مدلسازی رشد لایه نازکها (Caflisch) ـ روشهای چند شبکهبندی که امروزه در محاسبات ساختار الکترونی و سیالات ماکرومولکولی چند مقیاسی بکار گرفته شده است.
ـ روشهای ساختار الکترونی پیشرفته ، به منظور هدایت پژوهشها به سمت ابر مولکولها (Lee & Head – Gordon) منابع : www.daneshnameh.roshd.com 1- دائره المعارف ریاضیات دانشگاهی تالیف غلامرضا صفاکیش همدانی، نشر ریاضی، ۱۳۸۱، تهران.
2- ریاضیات مهندسی نوشته حسین سرمدی، نشر سنجش، ۱۳۸۶، تهران.