دانلود تحقیق سرگذشت ریاضی

Word 87 KB 30971 16
مشخص نشده مشخص نشده ریاضیات - آمار
قیمت قدیم:۱۶,۰۰۰ تومان
قیمت: ۱۲,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیا اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام میداد . اما بزودی مجبور شد وسیله شمارش دقیقتری بوجود آورد . لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود.

    سومری ها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.

    در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمین های زراعتی این قوم را محو می کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام ساده هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی مشهور می باشد. قدیمی ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله درباره علم حساب و مسائل حساب مقدماتی می باشد، از آن جمله رساله پاپیروس آهس است که در سال 1868 توسط ایسنلر مصرشان مشهور ترجمه شد. سایر تمدن های شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.

    قریب هزار سال پس از نابودی فرهنگ قدیم مصر  و محو تمدن آشور، یونانیان از روی مقدمات پراکنده و بی شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می نمود.

    نخستین دانشمند معروف یونانی طالس ملطلی (639- 548ق.م) است که در پیداش علوم نقش مهمی بعهده داشته و می توان وی را موجد علوم فیزیک، نجوم و هندسه «تشابه» به او کاملا بی اساس است.

    در اوایل قرن ششم ق.م فیثاغورث (572-500قبل از میلاد) از اهالی ساموس یونان کم کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورث عدد را به خاطر هم آهنگی و نظمی که دارد اساس و مبدأ همه چیز می پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می توان بیان نمود.

    پس از فیثاغورث باید از زنون فیلسوف و ریاضیادان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم.

     

     

     

     

    کاربرد ریاضی در مکانیک:

    کاربرد ریاضی در علوم مختلف انکارناپذیر است. برای مثال مبحث آنالیز تابعی در مکانیک کوانتومی، کاربرد بسیاری زیادی دارد و یا در بیشتر رشته‌های مهندسی معادله «لاپ لاسی» که یک معادله ریاضی است، مورد استفاده قرار می‌گیرد. در جامعه‌شناسی نیز نظریه احتمال و نظریه گروهها نقش بسیار مهمی ایفا می‌کند. در کل باید گفت که همه صنایع ،‌زیر ساخت ریاضی دارند و به همین دلیل در همه مراکز صنعتی و تحقیقاتی دنیا، ریاضیدانها در کنار مهندسان و دانشمندان سایر علوم حضوری فعال دارند و آنچه در نهایت ارائه می‌شود، نتیجه کار تیمی آنهاست.»

    دکتر ریاضی از اساتید دانشگاه در مورد فرصت‌های شغلی موجود در ایران می‌گوید:

    اگر در جامعه ما مشاغل جنبه علمی داشته باشند، قطعا به تعداد قابل توجهی ریاضیدان نیاز خواهیم داشت چون یک ریاضیدان می‌تواند مشکلات را به روش علمی حل کند. البته این به آن معنا نیست که در حال حاضر هیچ فرصت شغلی برای یک ریاضیدان وجود ندارد اما باید حضور ریاضیدانها در مراکز تحقیقاتی و صنعتی پررنگتر باشد.»

    هرچقدر که شغل یک فرد تخصصی‌تر شود، میزان ریاضیاتی که لازم دارد، بیشتر می‌گردد.

     

     

     

    برای مثال یک مهندس الکترونیک از آنالیز تابعی و فرآیندهای تصادفی استفاده می‌کند و یا یک برنامه‌ریز پروژه‌های اقتصادی از مطالب پیشرفته آماری مانند سریهای زمانی ، به عنوان ابزار کار یاری می‌گیرد. به همین دلیل امروزه تربیت متخصصان علم ریاضی، یعنی افرادی که قادر هستند ریاضیات مورد نیاز را آموزش داده و یا تولید کنند، اهمیت بسیار زیادی دارد. چرا که لازمه پیشرفت در تکنولوژی ، توجه به دانش ریاضی می‌باشد.

    کاربرد دیگری از ریاضی :

    راز مکانیک تکثیر میکروب ها کشف شد

    دانشمندان آمریکایی مدل ریاضی جدیدی را برای حل مسئله مکانیک تکثیر میکروب ها ارائه کرده اند که براساس آن می توان توضیح داد که باکتری ها چگونه خود را به دو تکه تکثیر می کنند.

    به گزارش خبرگزاری مهر، محققان دانشگاه جان هاپکینز بالتیمر با بررسی باکتری "اشیروشیراکولا" که در دستگاه گوارش انسان زندگی می کند و در دسته باکتری های مفید است، توانستند معمای چگونگی تکثیر میکروب ها را در یک مدل جدید ریاضی شرح دهند.

     

     

     

     

    کاربرد مثلث در موسیقی :

    مثلث از ابتدایی ترین اشکال هندسی بوده که انسانها در هنر از آن استفاده میکردند، بدون شک اولین نوع از انواع مثلث هم که در هنر از آن استفاده شده مثلث متساول الاضلاع بوده است. اهرام مصر نمونه بسیاری قدیمی (حدود 2800 سال پیش از میلاد) از کاربری مثلت در هنر معماری قدیم بوده است. نمونه های دیگر از استفاده از مثلث در هنر تمدن های قدیم را می تواند در کاشی کاری های دیواره معابد Pompeii در نپال نیز مشاهده کرد.

       معروف است تالس (640-550 سال پیش از میلاد) که پدر ریاضیات، نجوم و فلسفه یونان باستان بوده از شاگردان خود می خواهد که به مصر سفر کنند تا از پیشرفت علوم در آن تمدن اطلاعات لازم را کسب کنند و فیثاغورث (Pythagoras) از اولین افرادی بوده که این دستور را می پذیرد و به مصر سفر میکند. فیثاغورث از بنیانگذاران علمی موسیقی در جهان بوده و اغلب از هندسه برای مدل کردن استفاده می کرده، می خواهیم با استفاده از تجربیات او سلسه مطالبی را پیرامون ارتباط موسیقی با علوم هندسه، فیزیک و ریاضی آغاز کنیم.

        موسیقی را می توانیم به روشهای مختلف مدل کنیم برای شروع کار ساده ترین روش را انتخاب میکنم که عبارت است از مدل کردن عمودی موسیقی یاهمان هارمونی. این روش مدل کردن به موسیقیدان ها کمک می کند تا هنگام فکر یا گوش کردن به هارمونی تصویر بهتری از نت های موسیقی داشته باشند بخصوص برای نوازندگان سازغیر از پیانو.

       یک دایره در نظر بگیرید و آنرا به دوازده قسمت مساوی (یک اکتاو کروماتیک) تقسیم کنید و نت ها را به ترتیب روی هر قسمت بنویسد مانند شکل. یکی از ساده ترین اشکال هندسی که در این دایره تقسیم شده می توان ساخت مثلت متساوی الاضلاع می باشد. که اگر آنرا بسازید و به آن دقت کنید تفسیر موسیقی آن یک آکورد افزوده خواهد بود. حتما" شنید که آکوردهای افزوده جدای از اینکه معکوس باشند یا نه چهار حالت بیشتر نیستند که دایره فوق این موضوع را بسادگی نمایش میدهد چرا که اگر راس بالایی مثلث را در جهت عقربه های ساعت حرکت دهیم تا رسیدن به نت E و انطباق دوباره روی خود، می تواند سه حالت دیگر را به خود بگیرد. همچنین به وضوح در شکل می توان دید که یک آکورد افزوده از سه فاصله (که در اینجا هرکدام یک ضلع مثلث هستند) یکسان معادل 4 نیم پرده تشکیل شده است. 

    مثلث متساول الاضلاع معادل یک آکورد افزوده

        شما باز هم می توانید مثلث های دیگری درست کنید. به شکل بعدی نگاه کنید که آکوردهای دو ماژور و لا مینور را نمایش میدهد. این دو مثلث (آکورد) خصوصیات جالبی دارند اولا" اضلاع آنها باهم برابر است، ثانیا" نسبت به خطی که از D کشیده میشود و به G# خطم میشود متقارن می باشند، حتما" می دانید که مینور نسبی گام دو ماژور، لامینور می باشد. به این طریق شما می توانید یک روش ساده برای پیدا کردن گامهای مینور و ماژور نسبی پیدا کنید، هر چند اینکار در پیانو بخاطر وضوح دیداری که چیدمان نت ها وجود دارد ساده می باشد. 

کلمات کلیدی: ریاضی

سابقه تاريخي مسابقات رياضي به زماني باز مي گردد که مسابقات رياضي دانش آموزي در کشور مجارستان آغاز شد و پس از آن رفته رفته، کشورهاي ديگر به منظور تشويق و ترغيب دانش آموزان به فراگيري رياضيات به برگزاري مسابقات رياضي دست زدند تا اين که در سال 1959 ميل

فرض کنيد تحقيقي در مورد گروهي از مريض‌ها انجام مي‌شود، به طوري که احتياج به يک رژيم غذايي دارند که بايستي حداقل 2000 کالري و حداقل 600 واحد ويتامين D مورد لزوم از دو خوراک I و II کسب شود. هر واحد از خوراک I داراي 40 کالري و 8 واحد ويتامين D است و هر

رياضيات و بند کفش « آيا هيچ گاه از خود پرسيده ايد که چه کسي يک رياضيدان است؟ چندين سال پيش حرفه اي براي اين پرسش در ذهن من ايجاد شد و به نظرم رسيد که رياضيدان شخصي است که قدرت تشخيص فرصتهاي موجود براي به کار گيري رياضيات را دارد و اين در حالي

(آذرخور) ابوالحسن آذرخوربن استاد جشنش- مهندسرياضيدان ايراني(نيمه دوم سده چهارم- ثلث اول سده پنجم) رياضيداني بوده است معاصر بيروني – زيرا بيروني در بعضي از مواضع کتاب آثار الباقيه مطالبي را که از او شنيده است نقل کرده است0 نام او در آثارالباقيه در

رياضيات پايه و مقدمات آمار 1) اگر A و B دو مجموعه جدا از هم باشند، بطوري که { AUB= {a,b,c,d,e,f و {A = {a,d,e آنگاه?=(n(B 1) کوچکتر يا مساوي 3 2) بزرگتر يا مساوي 3 3) مساوي 3 4) هر سه گزينه 2) اگر AUB = A?B و {0,1,2,3,4}=B آنگاه ? = n(A) 1)

رياضيات همواره يکي از علوم فعال و زنده بوده است که براساس منطق استوار مي باشد .پايگاه معرفت رياضي خرد محض است و بر محور احساسات و خواسته ها نمي گردد .ميزاني که با آن انديشه هاي رياضي را مي سنجيم مستقل از آن انديشه هاست . نتايج همگي بر مبناي قو

چکيده: آموزش درس رياضيات از دغدغه‌هاي اصلي معلمان اين رشته مي‌باشد و با توجه به اينکه درس رياضي در بسياري از مطالب حالت انتزاعي دارد پرداختن به اين درس تا حدود زيادي توان ذهني بالقوه دانش‌آموزان را مي‌طلبد تا آن‌ها را به متفکراني خلاق و حل‌کننده‌ي

لگاريتم: همچنانکه امروزه مي دانيم قدرت لگاريتم به عنوان يک ابزار محاسباتي در اين حقيقت نهفته است که ضرب و تقسيم به کمک آن به اعمال ساده تر جمع و تفريق تحويل مي شوند. نشانه اي از اين ايده در فرمول که در زمان نپر کاملاً شناخته شده بوده پيدا شد و ک

تست رياضيات: سوال: متحرکي بر روي يک مسير داده شده با قانون زير حرکت مي کند: حال مطلوبست مسافت طي شده از زمان 0 تا زمان 1؟ جواب: بنا به فرمول مشتق گيري از انتگرالهاي وابسته به پارامتر داريم: بنابراين: در نتيجه پاسخ عبارتست از:

يک کشف بزرگ سبب حل شدن يک مسأله بزرگ مي‌شود، ولي در حل هر مسئله حبه‌اي از اکتشاف وجود دارد. مسئله شخص ممکن است چندان پيچيده نباشد، ولي اگر کنجکاوي وي را برانگيزد و ملکه‌هاي اختراع و اکتشاف را در فرد به کار وادارد، و اگر آن را با وسايل و تدابير خود

تاريخچه مختصر رياضيات انسان اوليه نسبت به اعداد بيگانه بود وشمارش اشياء اطراف خود را به حسب غريزه يعني همان طور که مرغ خانگي تعداد جوجه هايش را ميداند انجام ميداد اما به زودي مجبور شد وسيله ي شمارش دقيق تري به وجود اورد لذا به کمک انگشتان دست دستگ

ثبت سفارش
تعداد
عنوان محصول