دانلود تحقیق موسیقی و صوت ، قدرت سحر انگیز ریاضیات ...

Word 64 KB 30987 11
مشخص نشده مشخص نشده ریاضیات - آمار
قیمت قدیم:۷,۱۵۰ تومان
قیمت: ۴,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • در این نوشتار مختصر سعی کردیم به طور ساده و نه زیاد تخصصی ؛ به ریشه ریاضی صوت و موسیقی بپردازیم تا ببینیم که این شاخه از علم چه قدرت وصف نا پذیری در توصیف طبیعت دارد ، ابزار های قدرتمند ریاضی که سالها بعد از اختراعشان ما را در توصیف و توجیه پدیده های طبیعی یاری می کنند...
    حدود سال 1800 ژان باپتیست فوریه مسئله سریهای مثلثاتی ( که تا قبل از این روی آن بسیار کار شده بود و به دلایلی توسط ژوزف لویی لاگرانژ و سایرین شدیدا مورد انتقاد قرار گرفته بود) را ارائه داد :
    هر تابع متناوب را می توان با یک سری مثلثاتی از توابع سینوسی که فرکانسهایشان از نظر هارمونیکی مرتبط هستند نمایش داد...
    اما استدلال های ریاضی فوریه دقیق نبود ، و اشکال عمده ای که بر آن وارد بود تابع متناوبِ نا پیوسته ی موج مربعی بود ؛ چگونه ممکن بود مجموعی از توابع پیوسته سینوسی ، به یک تابع ناپیوسته همگرا شوند؟ یا توابعی که گوشه دارند ، مثل موج مثلثی . واقعا چطور ممکن است؟
    ولی واقعا اینگونه هست . به هر حال دانشمندان بزرگ دیگری روی این مسئله کار کردند (که وارد جزئیات نمی شویم) و آن را تکمیل کردند تا این که امروزه سریهای مثلثاتی به نام سری های فوریه خوانده می شوند :
    هر تابع متناوب (دارای شرایطی موسوم به شرایط دیریکله) را می توان با مجموع وزن دار هارمونیک های سینوسی نمایش داد...
    منظور از وزن ، همان ضرییب (اندازه) تابع سینوسی است. (A sin(wt+d
    A: ضریب یا وزن
    w : فرکانس
    d: فاز
    به مجموعه ی این ضرایب ، ضرایب فوریه تابع می گویند . هر مجموعه از ضرایب فوریه ، تابعی متناوب را به طور یکتا مشخص می کند . (مگر با تغییراتی بسیار جزئی که عملا مهم نیستند.)
    در سری فوریه ، یک فرکانس پایه وجود دارد که هارمونیک اصلی خوانده می شود و فرکانس سینوسی های دیگر مضارب صحیحی از این فرکانس پایه خواهند بود. بنابراین فرکانسهای موجود در یک تابع متناوب ، گسسته و همگی مضرب صحیحی از فرکانس پایه هستند ؛ که طیف فرکانسی گسسته نامیده می شود.
    تا این لحظه مبحث صرفا ریاضی بود ، حال دو ساز مثل پیانو و فلوت را در نظر بگیرید:
    یک نت خاص از هر دو ساز را به صدا در می آوریم، با دیرند و نواک مساوی . اگر نمودار تغییرات فشار آکوستیکی را بر حسب زمان برای دو صوت فوق رسم کنیم ، دقیقا با دو تابع متناوب مواجه می شویم.
    البته رسم این نمودار شاید برای عموم مشکل باشد ؛ اما راههایی برای مشاهده هست. تغییرات فشار آکوستیکی ، با یک ترانسدیوسر (مثل میکروفون) به تغییرات یک سیگنال الکتریکی (مثل ولتاژ) بر حسب زمان تبدیل می شود ، که روی اوسیلوسکوپ قابل مشاهده است. یا ساده از آن ، نرم افزارهای ویرایش صوت مثل Cool Edit Pro هم میتوانند این سیگنالها را نمایش دهند.
    گفتیم با دو تابع متناوب مواجه شدیم ، پس طبق نظریه ریاضی سری فوریه می توان این توابع را به سری فوریه بسط داد . اگر این کار را انجام دهیم ( این کار هم از طریق نرم افزار تحلیلی قدرتمندی مثل MATLAB امکان پذیر است! ) دقیقا می بینیم که فرکانس پایه و فرکانس هارمونیک های بعدی در هر دو صوت حاصل از پیانو و فلوت با هم برابرند. مثلا اگر نت A را به صدا در آوریم فرکانس اولین تابع سینوسی 440 Hz خواهد بود و فرکانس یعدی 880 Hz و ... اما :
    وزن توابع سینوسی متناظر در دو صوت فوق با هم برابر نیست ، و همین قضیه است که باعث می شود سیگنالهای زمانی که از دو صوت فوق ثبت کردیم یکسان نباشند؛ و صدای حاصل از دو صوت فوق متفاوت و قابل تشخیص باشد...
    اگر در آزمایشگاه هم به عنوان مثال صوت حاصل از نت A این دو ساز را از یک فیلتر ساده پایین گذر عبور دهیم به طوری که فرکانسهای بالای 440 Hz تضعیف و یا حذف شوند ، روی اوسکوپ فقط یک سیگنال سینوسی با فرکانس 440 Hz مشاهده می شود.
    تا کنون در مورد توابع متناوب صحبت کردیم . اما اگر تابع متناوب نباشد چطور؟
    از نظر ریاضی برای توابع غیر متناوب ، مثلا توابع با عمر محدود نیز را بطه ای وجود دارد :
    هر تابع نا متناوب (دارای شرایطی موسوم به شرایط دیریکله) را می توان با انتگرالی وزن دار از توابع سینوسی نمایش داد...
    این نوع نمایش توابع نامتناوب را نمایش انتگرال فوریه تابع می نامند . در این حالت فرکانسها دیگر مضاربی از یک فرکانس پایه نیستند ، بلکه بینهایت به هم نزدیکند ، به همین خاطر مجموع به انتگرال تبدیل شده است. به مجموعه ی این ضرایب ، تبدیل فوریه تابع می گویند.یک تبدیل فوریه ، تابعی را به طور یکتا مشخص می کند.(مگر با تغییراتی بسیار جزئی که عملا مهم نیستند.)
    بنابر این طیف فرکانسی حاصل از این توابع دیگر گسسته و دارای مقادیر مرتبط هارمونیکی نیست ، بلکه طیف پیوسته ای را از فرکانس صفر تا فر کانس بینهایت شامل می شود ، مثل طیف صدای انسان.
    اگر دو فرد که از نظر محدوده صدایی مساوی هستند ( مثلا هر دو تنور هستند ) عبارتی را بخوانند ، در صدای هر دو فرد گستره پیوسته ی برابری از فرکانسها موجودند ، اما با ضرایب متفاوت ، که باعث تفاوت در سیگنال زمانی و نهایتا صدای متفاوت آن دو می شود که با گوش قابل تشخیص است... توجه می کنیم که سیگنال صدایی که در مجموع از یک ارکستر بر می خیزد متناوب نیست ، بنابر این طیف فرکانسی پیوسته ای دارد.
    ... و این ، مختصری از قدرت بیکران این شاخه گرانقدر از علم را به ما نشان می دهد ، واقعا بخش عمده ای از تغییرات جهان به صورت سینوسی ها و مجموع آنها هستند ، گویی تمام سیستمها و مکانیسمها اعم از طببعی مثل گوش ، یا ساخته دست بشر مثل فیلتر ها و ... اصل برهم نهی ( Superposition ) را می دانند ؛ می دانند که به سینوسیها پاسخ دهند و این پاسخها را با هم جمع کنند تا پدیده هایی به وجود آیند که جهان ما را می سازند!

    تنیدگی موسیقی در دل ریاضیات

    سید عبدالله انوار در این نشست به بررسی تأثیرات ریاضیات، هندسه، منطق و فلسفه بر موسیقی ایرانی-اسلامی پرداخت. انوار به پایه های علم موسیقی در فلسفه اشاره کرد و گفت: «هر آنچه می خواهد خواص و عوارضش مورد بحث قرار گیرد باید دانسته شود آن خود چیست و عناصر تشکیل دهنده اش چیست. به عبارت دیگر، چیزی که عوارض آن مورد بررسی است و بر حسب اصطلاح اهل استدلال به نام «موضوع» مطرح است، ذاتش از چه ذاتیاتی به وجود آمده و این ذاتیات مجتمع، پس از اجتماع واحد چه خواص و ویژگی های دائمی یا غیردائمی دارد. چون امور با این نحوه از شناسایی مطرح می شود، در ذهن و در معرفی آن به دیگری به هیچ وجه با ابهام رو به رو نیست و آن چنان که شایسته آن است مورد شناخت قرار گرفته است و هر چه این عوارض روشن تر باشد، این شیء بهتر در دامن شناسایی قرار می گیرد.
    با گسترش اسلام در مناطق مختلف، از پنجاب تا آندلس تحت لوای قرآن درآمد. آن وقت بود که کم کم مسائل عقلانی طرح شد. بدین ترتیب پرسش هایی مطرح شد و به تبع آن علومی همچون کلام، منطق، ریاضیات و فلسفه مورد توجه قرار گرفتند. در زمان مأمون عباسی در بغداد «بیت الحکمه» بر پا شد. پس، به ترتیبی که در تاریخ مسطور است، عالمانی به بیزانس فرستاده شدند و کتب ارسطو و جالینوس و بقراط و سایر یونانیان که در طریق عقل خشک منطقی قدم زده بودند، به بغداد آورده شد.»
     

سال جهانی ریاضیات بود و مایل بودم که مثل بسیاری از عاشقان ریاضی راجع به چیستی ریاضی چیزی تهیه کنم. این کار عملی شد اما از همان موقع باورگونه ای در ذهنم ایجاد شد که تا مدتها جرأت بیان صریح آن را حتی برای خودم نداشتم، چرا که با مسیری که خود در آن قدم گذاشته ام، تناقص داشت. این فکر همواره مرا آزار داده است. تصمیم گرفته بودم که روی این فکر کار جدی انجام داده و آن را در کنفرانس ریاضی ...

از عوامل موثری که در بهبود درس ریاضی می‌تواند اثربخش باشد فعالیت‌های‌ مکمل‌ و فوق‌ برنامه‌ است که‌ قسمتی‌ از فرایند تدریس‌ فعال‌ و پویاست‌. این‌ فعالیت‌ها را می‌توان‌ به‌ گونه‌ای‌ در تدریس‌ طراحی‌ نمود که‌ فرصت‌ اندیشیدن‌، حل‌ مساله‌، ایجاد انگیزه‌ و تثبیت‌ یادگیری‌ را به‌ دنبال‌ داشته‌ باشد. تجارب‌ نگارنده‌ در بررسی‌های‌ گوناگون‌ ]و بررسی حاضر[ خصوصاً در درس‌ ریاضی‌ حاکی‌ از ...

چکيده: آموزش درس رياضيات از دغدغه‌هاي اصلي معلمان اين رشته مي‌باشد و با توجه به اينکه درس رياضي در بسياري از مطالب حالت انتزاعي دارد پرداختن به اين درس تا حدود زيادي توان ذهني بالقوه دانش‌آموزان را مي‌طلبد تا آن‌ها را به متفکراني خلاق و حل‌کننده‌ي

فلسفه رياضيات فلسفه رياضي يا فلسفه رياضيات ، شاخه‌اي از فلسفه است که به بنيادهاي وجودي رياضيات مي‌پردازد. از جمله پرسش‌ هائي که فلسفه رياضي ، کوشش در پاسخ به آن دارد اين‌ها است: • چرا رياضي ، در توضيح طبيعت موفق است؟ • وجود داشتن عدد يا ديگر م

رياضيات رياضيات را معمولاً دانش بررسي کميت‌‌ها و ساختار‌ها و فضا و دگرگوني (تغيير) تعريف مي‌کنند. ديدگاه ديگري رياضي را دانشي مي‌داند که در آن با استدلال منطقي از اصول و تعريف‌ها به نتايج دقيق و جديدي مي‌رسيم (ديدگاه‌هاي ديگري نيز در فلسفه رياضيات

مراحل پيدايش دانش رياضي در اين قسمت مي خواهم در ارتباط با تاريخ رياضييات مطالبي را بنويسم .که مطالب درج شده در اين قسمت بر گرفته از کتاب تاريخ رياضيات است. مراحل پيدايش دانش رياضي رياضيات طي چهار مرحله به وجود آمده است . مرحله اول : مرحل

رياضي هدف «رياضيات علم نظم است و موضوع آن يافتن، توصيف و درک نظمي است که در وضعيت‌هاي ظاهرا پيچيده‌ نهفته است و ابزارهاي اصولي اين علم ، مفاهيمي هستند که ما را قادر مي‌سازند تا اين نظم را توصيف کنيم» . دکتر ديبايي استاد رياضي دانشگاه تربي

رياضي هدف «رياضيات علم نظم است و موضوع آن يافتن، توصيف و درک نظمي است که در وضعيت‌هاي ظاهرا پيچيده‌ نهفته است و ابزارهاي اصولي اين علم ، مفاهيمي هستند که ما را قادر مي‌سازند تا اين نظم را توصيف کنيم» . دکتر ديبايي استاد رياضي دانشگاه تربيت م

به تقريب همه دانش ها به طور کم و بيش از رياضيات استفاده مي کنند . قانون هاي دانش هاي پايه ، مکانيک ، نجوم ، فيزيک و تا اندازه زيادي شيمي به طور معمول به وسيله فرمول بيان مي شود و نظريه هاي آنها زماني پيشرفت مي کند که از دستگاه هاي رياضي به طور گسترد

ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم? ● هدف ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف ...

ثبت سفارش
تعداد
عنوان محصول