جریانهای برخورد کننده
بسیاری از عملیات مهندسی که در بین دو فاز امتزاج ناپذیر انجام می شود بوسیله انتقال جرم یا انتقال حرارت کنترل می شوند، بنابراین همواره کوشش می شود که تا حد امکان چنین مقاومتهایی را کاهش داد.
اصولاً فرایندهای انتقال حرارت یا جرم در سیستم، گاز-جامد، گاز-مایع، مایع-مایع و جامد-مایع عموماً ممکن است با سه مقاومت سری در نظر گرفتهشوند، که با فرض یک سیستم قطره مایع-گاز به عنوان حالت مبنا، ممکن است برحسب خواص سیستم مقاومت های زیر مؤثر باشند، مقاومت خارجی[1] مقاومت سطح[2]، مقاومت داخلی[3].
مقاومت داخلی را ممکن است با کاهش اندازه ذره فار پیوسته کاهش داد، اگر این کار امکان پذیر نباشد باید زمان اقامت ذره را در داخل سیستم افزایش داد. کاهش مقاومت خارجی ممکن است از طریق روشهای زیر میسر گردد.
a- افزایش سرعت نسبی بین ذرات و فاز پیوسته که با افزایش اصطکاک بین فازها نیز مرتبط است
b- کاهش ابعاد ذرات که باعث کاهش ضخامت زیر لایه آرام که کنار سطح تشکیل می شود، می گردد. کاهش ابعاد ذرات باعث افزایش ضرایب انتقال میگردند.
c- توزیع یکنواخت فاز پراکنده درون فاز پیوسته.
d- اعمال تأثیرات دیگر روی ذرات، مثل نیروهای اینرسی و سانتریفوژی
مقاومت سطح با حذف ناخالصی ها ممکن است به دست آید.
در دهه 60 میلادی روش بسیار ویژه ای بعنوان جریانهای برخورد کننده[4] (IS) توسط [1]Elperin مطرح شد که روش بسیار مؤثری برای فرایندهای انتقال جرم و حرارت محسوب می گردد. انتظار می رود که این سیستم ها بصورت گسترده ای مورد استفاده قرار بگیرند.
این سیستم می تواند برای سیستم های دو فازی مایع-گاز-جامد بکار برود. در این روش دو جریان در خلاف جهت هم روی یک محور به یکدیگر برخورد میکنند. برای یک جریان نمونه گاز-جامد همانطور که در شکل 1-1 دیده میشود دو جریان در وسط (ناحیه برخورد) به شدت به هم برخورد می کنند، بدلیل برخورد بین جریانهای مخالف، یک ناحیه نسبتاً باریکی با تلاطم شدید ایجاد می شود، که شرایط بسیار مطلوبی را برای افزایش سرعت انتقال جرم و حرارت بوجود میآورد. علاوه بر این در این ناحیه غلظت (تراکم) ذرات بیشترین مقدار است [2]، و بصورت یکنواخت تا نقطه تزریق کاهش می یابد، این تکنیک در سیستم های گاز-مایع، مایع-مایع و جامد-مایع نیز بکار می رود. با توجه به جریان مخالف باعث ورود ذرات به داخل فاز پیوسته مقابل به علت وجود نیروی اینرسی میشود. بعلت نیروی درگ سرعت ذرهها در فاز مخالف کاهش پیدا می کند و در نهایت همراه فاز پیوسته بر میگردد و دوباره به ناحیه برخورد میرسد و این عمل تکرار میگردد.
بطور کلی سه حالت ممکن است برای ذرات در سیستم پیش بیاید.
اول ممکن است برخی ذرات بصورت رودررو با هم برخورد کنند و در نتیجه سرعت آنها صفر گردد و از سیستم بخاطر نیروی وزن خارج گردند. دوم اینکه گاهی این برخورد با زاویه صورت بگیرد که باعث تغییر مسیر ذره شده و ذره را از سیستم خارج می کند. در حالت سوم ذره بدون برخورد وارد جریان فاز پیوسته مقابل می شود. با توجه به شکل 1-1 ذره در ابتدا هم سرعت فاز گاز میباشد و سرعت آن ug است وقتی که ذره وارد فاز مقابل می شود سرعت نسبی فاز پیوسته و ذره برابر 2ug می باشد.
1-1 U=ug-(-ug)=2ug
بنابراین سرعت نسبی ذره در ابتدای ورود به فاز پیوسته مقابل بیشترین مقدار و برابر 2ug است، با حرکت ذره به عمق فاز پیوسته مقابل به علت نیروی درگ رفته رفته از سرعت ذره کاسته می گردد و سرعت نسبی آن کم می شود.
1-2 U=Up-(-Ug)=Up+Ug
تا اینکه سرعت ذره صفر می گردد و سپس همراه فاز پیوسته بر می گردد و سرعت آن افزایش می یابد، اگرچه در سیستم به علت اتلاف های انرژی سرعت ذره رفته رفته کم می شود، و از سیستم خارج می شود ولی آمد و رفت های متوالی ذره در بین دو فاز باعث افزایش زمان اقامت در سیستم می شود تا اینکه ذره به علت اتلاف انرژی و یا حالت اول و دوم از سیستم خارج شود. بنابراین برای تعداد ذرات توزیعی از زمان اقامت در سیستم وجود خواهد داشت که بصورت متوسط باعث بهبود عملیات انتقال در سیستم دو فازی میگردد.
مزایای جریانهای برخورد کننده
بطور کلی جریانهای برخورد کننده بعلت شرایط ویژه، سرعت نسبی بالای فازها، برخورد و نیروهای برخوردی، افزایش زمان اقامت و تلاطم شدید در ناحیه برخورد باعث بهبود و افزایش پدیده های انتقال در سیستم می شوند.
افزایش سرعت نسبی U بین فازها که وارد جریان پیوسته فاز متقابل میشوند. که نسبت به راکتورهای دیگر بسیار بیشتر می باشد.
بعلت حرکت نوسانی در فاز پیوسته زمان اقامت ذرات در سیستم افزایش می یابد.
سطح مؤثر تماس برای انتقال جرم و حرارت برابر سطح واقعی ذرات است، این حالت در دستگاههای دیگر وجود ندارد زیرا سطح تماس مؤثر کمتر از سطح واقعی ذرات است.
جریان آشفته ایجاد شده در ناحیه برخورد باعث افزایش ضرایب انتقال حرارت و جرم می شود.
بعلت برخورد ذرات و نیروهای برشی در سیستم های گاز جامد باعث شکست ذرات می شود که باعث کاهش اندازه ذرات و افزایش سطح آنها میگردد.
در سیستم های مایع –گاز یا مایع مایع مزیت های زیر دیده می شود.
تبدیل جریان مایع به قطرات ریز که باعث افزایش سطح تماس می شود.
حرکت نوسانی قطرات باعث افزایش زمان اقامت می شود.
در منطقه برخورد جریان آشفته ایجاد می شود و باعث اختلاط کامل و کاهش گرادیان دما و غلظت در فاز پیوسته می شود که باعث افزایش انتقال بین دو فاز می شود. و نیز افزایش ضرایب انتقال را در پی دارد.
افزایش زمان اقامت ذرات در راکتور و حرکت نوسانی به وسیله آزمایشات مختلف به اثبات می رسد.
تقسیم بندی و اشکال راکتورهای با جریانهای برخوردی
راکتورهای با جریان برخورد کننده با استفاده از اثرات جریانهای برخورد کننده برروی پدیده های انتقال برای سیستم های چند فازی مورد استفاده قرار می گیرند. تکنیک IS (Impinging Streams) به تکنیک استفاده از جریانهای برخورد کننده در فرآیندهای گاز-گاز، گاز-جامد، گاز-مایع، مایع-مایع و
مایع-جامد گفته می شود. راکتورهای برخوردی ممکن است به دلایل زیر فقط در ساختارشان متفاوت باشند.
1- خواص مواد تحت فرآیند، گرانول، خمیر، محلول ها و ...
2- پارامترهای انجام پروسس، دما، فشار و ...
3- ملزوماتی که برای خواص محصول لازم است
4- مواد ساخت راکتور
راکتورهای با جریانهای برخوردکننده (ISR) بطور کلی به دو دسته تک مرحله ای و چند مرحله ای تقسیم می شوند. در راکتورهای تک مرحله ای جریان ها فقط یک بار با یکدیگر برخورد می کنند. در حالی که راکتورهای چند مرحله ای از تعدادی راکتور تک مرحله ای ساخته شده اند که جریانهای خروجی از هر راکتور وارد راکتور دیگر می شود. یک شمای کلی از هر یک از دو دسته از راکتورهای با جریانهای برخوردی در شکل 2-1 و 2-2 دیده می شود.
انواع مختلف راکتورهای تک مرحله ای با جریانهای برخوردی در شکل 2-3 مشاهده می شود که برای سیستم های مختلف مورد استفاده قرار می گیرد.
بطور متداول راکتورهای با جریانهای برخورد کننده (ISR) از اجزاء زیر تشکیل می شوند. تانک ذخیره خوراک؛ تغذیه کننده؛ دو لوله شتاب دهنده که به بدنه راکتور متصل است؛ بدنه راکتور؛ خروج محصول و خروج فاز پیوسته؛ جداکننده؛ تانک ذخیره محصول
راکتورهای با جریانهای برخوردی (ISR) را بر مبنای تعداد جریانهای برخورد کننده، زاویه برخورد، شکل مجرای حاوی جریانها، مشخصات جریالن سیالها (برای مثال گردابه ای و غیر گردابه ای) و غیره، می توان به دسته ای بزرگ مختلفی تقسیم بندی کرد. تقسیم بندی بخشی از انواع این نوع راکتورها که مورد بحث ثرار می گرد بوسیله Mujamdar , kudva ارایه گردیده است.
موارد مختلفی می تواند ملاک تقسیم بندی باشد
- جریان در فاز پیوسته[5] (jet)
چرخش گردابه ای،[6] موازی[7]
- جریان سیال درون راکتور[8]
مختلف الجهت و هم محور[9]، مختلف الجهت و غیر هم محور[10]، منحنی وار روی یک محور[11]، منحنی وار غیر هم محور
- حالت و تعداد واحد برخورد
حالت ثابت، حالت متحرک، چند منطقه ای (شکل 2-4)
شکل 2-1 راکتور برخوردی تک مرحله ای
شکل 2-2 راکتور برخوردی چند مرحله ای
در راکتورهای چند مرحله ای با جریانهای برخورد کننده علاوه بر اینکه نوع هر یک از راکتورهای موجود می تواند مبنای تقسیم بندی آنها قرار بگیرد نحوه آرایش جریانها نیز اساس تقسیم بندی قرار می گیرد، که دو گونه جریان همسو و ناهمسو در شکل 2-2 مشاهده می گردد.
مسطح با جریان شعاعی، مسطح با جریان داره ای
- نحوه کار راکتور
خوراک پیوسته دو طرفه، خوراک پیوسته یک طرفه، نیمه پیوسته
شکل و سیستم خاص هر یک از انواع راکتورهای با جریانهای برخوردی آنها را برای کاربرد متفاوتی مناسب میکند.
2-1 انواع راکتورها با جریان های برخوردی
2-1-1 راکتورهای سیکلونی با دو جریان برخورد کننده
TIS Cyclone Reactors
این راکتورها یکی از رایج ترین انواع راکتورهای برخورد کننده می باشند و در سیستمهای جامد – گاز و جامد – مایع کاربرد دارند. یک نمونه از این راکتورها در واکنش گاز-جامد در شکل 2-5 نشان داده شده است. راکتور از محفظهای حلقهای (منطقه شماره یک) که درون یک استوانه قرار دارد، تشکیل شده است (همانند یک سیکلون). گاز از طریق دو لوله موازی ورودی به محفظه حلقهای وارد میشود. ذرات جامد از طریق خوراک رسان شماره 2، به درون جریان اصلی تزریق میشوند. هر دو جریان داخل لوله های اصلی دارای یک شدت میباشند. این دو جریان پس از ورود به محفظه حلقهای، به دلیل نیروی جانب مرکز و اثر ماگنوس[12] به طرف مرکز راکتور منحرف می شوند و در نقطه 3 (منطقه برخوردی) با یکدیگر برخورد میکنند. سیال پس از برخورد و ذرات پس از طی حرکت نوسانی خود به پایین میریزند. ذرات از طریق خروجی انتهای راکتور و سیال، اگر گاز باشد از طریق استوانه وسط (مانند شکل) و اگر مایع باشد، از طریق مجرای خروجی ذرات از راکتور خارج می شود.
شکل 2-5 راکتور سیکلونی با دو جریان برخورد کننده
از این راکتور در موارد زیر استفاده شده است. خشک کردن ذرات جامد []، اختلاط گاز-گاز و جامد-جامد[]، انحلال ذرات[] و احتراق گازها.[]
1-1-2 راکتورهای سیلکونی با دو جریان برخورد کننده همراه با خوراک اضافی سیال TIS Cyclone Reactors with additional Fluid Feed
این راکتورها مشابه با راکتور های سیلکونی با دو جریان برخورد کننده و دارای دو منطقه برخورد می باشند (شکل 2-6). سیال و ذرات از طریق لولههای موازی واقع در بالای راکتور وارد شده و در منطقه برخوردی با یکدیگر برخورد کرده و به پایین می ریزند. در دو لوله پایینی، تنها جریان سیال وجود دارد که با برخورد با ذرات، دومین منطقه برخوردی را به وجود میآورد. با استفاده از این راکتور بعلت وجود دو منطقهی برخوردی، زمان اقامت متوسط ذرات افزایش و عملیات اختلاط بهبود می یابد (نسبت به راکتورهای سیلکونی با دو جریان برخورد کننده و بدون خوراک اضافی سیال). از این راکتور نیز همانند راکتورهای قبلی در خشک کردن جامدات[] انحلال و ذرات جامد در این راکتور بررسی شده است.