- مقدمه مصرف پلیمر های پلی کربنات، پلیمرهای که با گروه –O-C-O- بهم متصل هستند، از ز مان گزارشات اولیه بسیار رشد کرده است Report 1969) (PEP .
تضمین رشد آینده این صنعت با افزایش شرکتهای جدید به 6 تولید کننده سابق این ماده نشان داده شده است رشد تکنولوژی، شامل افزایش گریدهای با کاربرد خاص، امکان رقابت پلی کربناتها را در مصارف مختلف فراهم کرده است.
پلی کربناتها در بین پلیمر های مختلف از لحاظ پایداری ابعادی مقاومت ضربه و شفافیت بسیار برجسته میباشند.
مقاومت در برابر شعله آن خوب بوده و توسط بهبود دهندههایی بهتر شده تا گرید خاصی تولید شود.
با وجود اینکه پلیمرهای دیگر و فلزات در تعدادی از خواص بتنهایی بهتر از پلی کربنات میباشد، اما نیاز به ترکیبی از خواص مختلف باعث میشود که پلی کربنات بعنوان تنها امکان انتخاب شود.
از سوی دیگر کمی مقاومت در برابر حلالها یک اشکال عمده در بسیاری از کاربردها میباشد.
بطور کلی پلی کربناتها در تمامی رشتههای مهندسی پلاستیک رقابت میکنند، که از مصارف عمده آن میتوان به شیشهها، علامات و روشنایی اشاره کرد.
این گزارش تکنولوژی، هزینه و بازار پلی کربناتها را که از سه روش فسژنیزاسیون محلولی فسژنیزاسیون بین سطحی و ترانس استریفیکاسیون تهیه میشوند را ارائه میکند.
2 نوع از دو روش اول و یک نوع از روش سوم ارائه خواهد شد.
همچنین نحوه تولید گرید مقام در برابر شعله و اکستروژن دوباره پلیمر برای تولید گریدهای خاص بیان خواهد شد.
این تحقیق به پلی کربنات ترمو پلاستیک آروماتیک بر پایه بیس فنول A محدود است، که مهمترین مزیت پلی کربنات از نقطه نظر تجاری میباشند.
در PEP گزارش 50، کوپلیمرها فقط با توجه به بیس فنول A و بیس فنول A هالوژنه و یا مقدار کمی از عوامل سه گروهی شاخهای در نظر گرفته شده است بدلیل عرضه تجاری گریدهای خاصی، میبایستی هم کو پلیمر ها و آلیاژ ها را در نظر گرفت، کوپلیمرهایی که تجاری نیستند و همچنین آلیاژهایی که پلی کربنات جزء کم هستند در نظر گرفته نمیشوند.
این گزارش هیچگونه آنالیزی در مورد پلیمرهای فوم ، پلیمرهای تقویت شده با الیاف و افزودنیهایی ضد شعله که موضوع PEPهای مختلف هستند را ارائه نمیکند.
مواد اولیه خام بیس فنول A .
فسژن و تترابروموبیس فنول A (TBBPA) موضوع PEP شماره 81 میباشند.
منابع اطلاعاتی ، پتنتها، جزوات و مقالات مربوطه از سال 1976 میباشد.
2- خلاصه بعد از 7 سال افزایش سالیانه 20% مصرف در ایالات متحده آمریکا، بیش از 60% در سال 1973 افزایش یافت.
افزایش در سال 1974 با توجه به منحنیهای مقدماتی برابر %10 بود که احتمالاً کمتر از مقدار واقعی آن میباشد.
با ظرفیت جدید تولید، میانگین افزایش تولید سالیانه 20% یک پیشبینی قابل قبول برای کلیه محلهای تولید مانند اروپای غربی، ایالات متحده و ژاپن میباشد.
مصرف به میزان تجارت بود و همچنین به کمبود محصولات رقابتی بستگی خواهد داشت.
تولید آن با کمبود مواد اولیه ممکن است محدود شود.
بعد از 15 سال از تجاری شدن پلی کربنات، ظرفیت کلی جهان کمتر از 500 میلیون پوند بر سال میباشد.
از نقطه نظر رقابتی، تجارت توسط بایر، توابع آن موبای و جنرال الکتریک کنترل میشود.
یک سرمایه کلان در فروش و سرویس تکنیکی نیاز میباشد تا این حکمفرمایی شکسته شود.
جنرال الکتریک 75 میلیون دلار فقط در مت ورنون و ایندین فاسیلیتی (Indian facilities) سرمایهگذاری کرده است.
میزان تولید، تولید کنندگان عمده در اوایل 1973 بصورت زیر میباشد: میلیون پوند بر سال هزار تن بر سال بایر 220 100 جنرال الکتریک 150 68 موبای 18 40 یکی از مهمترین چیزهای مورد نیاز تعدد گریدهای مختلف میباشد.
گریدهای جدید خواص زیادی از جمله مقاومت در برابر شعله، مقاومت در برابر آسیب، مقاومت در برابر اشعهuv ، ترکیب سفتی و مقاومت ضربه، مناسب بودن برای قالبگیری چرخشی و همچنین مناسب بودن برای فومهای ساختاری را دارا هستند.
رشد عمده اخیراً در تهیه شیشه، Lighting و علامات میباشد.
بعنوان شیشه نشکن پلی کربناتها به موقعیت رزینهای آکریلیک نفوذ کردهاند روم و هاس در حل ورود به بازار شیشههای پلی کربنات از طریق خرید دستگاههای ورقسازی و تجارب از شرکت رولند (Rowland) یک شرکت کوچک که رقابت در این بازار حساس به سرمایه را مشکل میدانست میباشند.
روم و هاس امروزه تولید کننده پلیمر پلی کربنات نمیباشند مهارت و سرمایه مورد نیاز و همچنین بازار پلی کربنات بیان کننده آنست که فقط در کشورهایی پیشرفته استفاده خواهند شد.
نفوذ پلی کربناتها به بازار سنتی پلیمرهای دیگر و فلزات، با افزایش تولید و در نتیجه کاهش قیمت آنها بیشتر میشود.
در سال اخیر این روند قیمت بدلیل افزایش تورم برعکس شده است.
حداقل قیمت در ایالات متحده 98 سنت بر پوند در مقایسه با 75 سنت بر پوند و قیمت تجاری اولیه میباشد.
با این وجود، نفوذ در بازار بدلیل تأثیر تورم بر اجناس رقابتی همچنان ادامه دارد.
تولید کنندگان سه روش عمده برای تولید پلی کربنات بکار میبرند: فسژنیزاسیون محلولی، فسژنیزاسیون بین سطحی و ترانس استریفیکاسیون.
فقط کسر کمی از تولید کل توسط ترانس استریفیکاسیون میباشد و مقدار عمده تولید از طریق فسژنیزاسیون بین سطحی میباشد.
اما تفکیک دقیق در میزان آن از مقالات مشخص نمیباشد.
کلیه این روشها به انضمام دو متغیر و یک روش بر ای گرید مقاوم در برابر شعله در این گزارش نوشته شده است.
فسژنیزاسیون محلولی شامل واکنش بیس فنول A با فسژن در حضور پیریدین بعنوان گیرنده اسید ] تا محصول جانبی اسید کلریدریک تولید کند[ و p-t بوتیل فنول (PTBP) بعنوان اختتام دهنده زنجیربا متیلن کلراید بعنوان حلال میشود.
یک پلیمر واحد تکراری تولید میشود که انتهای زنجیر با گروههای p-t بوتیل فنیل اختتام یافته است.
پلیمر باز یافت شده، اکسترود میشود و بصور ت چیپهایی بریده میشود فسژنیزاسیون محلولی بصورت تجاری توسط جنرال الکتریک استفاده میشود.
در فسژنیزاسیون بین سطحی، یک فاز Caustic آبی اسید هیدروکلریک را جذب کرده و از پریدین استفاده نمیشود.
تری اتیل آمین این واکنش را سرعت میبخشد.
فسژنیزاسیون بین سطحی بصورت تجاری توسط شرکتهای بایره موبای و تولید کنندگان ژاپنی استفاده میشود.
توانس استریفیکاسیون واکنش بین دی فنیل کربنات با بیس فنول A در دمای بالا (elevated) میباشد.
ملکولهای پلیمری که از این طریق تولید میشود با گروههای فنیل خاتمه مییابند.
ترانس استریفیکاسیون بصورت تجاری توسط شرکت بایر و شرکتهای تحت لیسانس آن استفاده میشود.
جدول 2-1 ارزیابی ما را از تولید گریدهای تزریق پلی کربنات نشان میدهند در فسژنیزاسیون محلولی پیوسته (ستون اول جدول) از یکسری راکتور همزن دار استفاده میشود.
هزینهها بالاتر از فسژنیزاسیون بین سطحی توسط راکتورهای مشابه (ستون دوم) میباشد.
که یکی از دلایل آن میتواند بدلیل نیاز به بازیافت پیریدین باشد.
در روش راکتور پیوسته (ستون سوم) فسژنیزاسیون بین سطحی در یک راکتور tubular که بعد از آن راکتورهای ناپیوسته (Batch) همزندار وجود دارد انجام میشود.
هزینههای نشان داده شده بیشتر از هزینههای فسژنیزاسیون بین سطحی با استفاده از راکتورهای پیوسته همزندار (ستون دوم) میباشد.
این امر بدلیل زمان طولانیتر واکنش – همانطور که در پتنت نشان داده شده است- میباشد.
علی ایحال هیچگونه اطلاعات کینتیکی دقیقی وجود ندارد.
راکتور پیوسته توسط ایدمیتسو (Idemitsu)ابداع گردید.
اما طراحی پروسس ما برابر با محاسبات اقتصادی ایدمیتسو نمیباشد.
فسژنیزاسیون محلولی ناپیوسته (ستون چهارم) برای مقایسه با فسژنیزاسیون محلولی پیوسته (ستون اول) نوشته شده است.
هزینههای سیستم ناپیوسته بدلیل نیاز به فضای بیشتر برای راکتور و Surge، 20 میلیون پوند در سال بیشتر میباشد.
اما اختلافات بطور نسبی کم میباشد.
زیرا تغییر محصولات در سیستم ناپیوسته سادهتر است.
و چنین سیستمی در صورت نیاز به تولید گریدهای مختلف در یک مجتمع ترجیح داده میشود.
در عین حال موقعیت اقتصادی سیستم ناپیوسته با کاهش ظرفیت تولید بهتر میشود.
با وجود اینکه مقایسهها برای گرید تزریق میباشد، اما پروسسهای بحث شده تا با اینجا برای تولید تمام گریدهای پلی کربنات مناسب میباشند.
ترانس استریفیکاسیون برای تولید گریدهای ویسکوز مناسب نمیباشد، بنابراین ارزیابی آن بر اساس نصف ظرفیت گرید تزریق انجام میشود.
همانطور که در جدول نشان داده شده است (ستون پنجم) حتی با وجود ظرفیت کم، حداقل هزینه استهلاک را دارد.
و در نتیجه هزینه تولید بسیار مناسبی در مقیاس برابر را خواهد داشت، متاسفانه کیفیت محصول تولید شده توسط روش ترانس استریفیکاسیون کمتر از روشهای دیگر میباشد.
با وجود اینکه پلی کربناتها ذاتاً در برابر سوختن مقاوم هستند ، اما گریدهای خاص مقاوم در برابر شعله که حاوی هالوژنها و احتمالاً عناصر دیگر میباشند عرضه شدهاند.
ما هیچگونه اطلاعات دقیق در مورد ترکیبهای تجاری نداریم.
ستون ششم جدول یک ارزیابی از پلی کربنات مقاوم در برابر شعله حاوی 5% وزنی برم ( از طریق تترابرموبیس فنول A) را نشان میدهد.
پلیمر در این مورد از طریق فسژنیزاسیون محلولی پیوسته تولید شده است.
در نتیجه ستون ششم میبایستی با ستون اول مقایسه شود.
کل هزینه مواد برای گرید مقاوم در برابر شعله شامل 3/3 سنت بر پوند از گرید تزریق بیشتر است.
با مقایسه، هزینه استهلاک برای گرید مقاوم در برابر شعله (شامل 3 سنت بر پوند هزینه فروش و تحقیق بیشتر از حالت عادی) 20 سنت بر پوند بیشتر باشد.
بجای استفاده از امکانات ویژهای برای تولید گرید مقاوم در برابر شعله، میتوان مستر بچ هایی حاوی مقدار زیاد برم ساخت.
سپس این مستر بچ را میتوان با گریدهای استاندارد آلیاژ کرد و دوباره آنها را اکسترود نمود.
ستون آخر هزینه اضافی مورد نیاز برای آلیاژسازی و اکستروژن دوباره را نشان میدهد.
اشکال شامل قیمت رزین و افزودنیها نمیشوند.
در کلیه پروسسهایی که ارزیابی شد، (بجز ترانس استریفیکاسیون) پلیمر در یک نقطه بصورت پودر میباشد.
در نتیجه افزود نیها را میتوان قبل از اکستروژن با آن آلیاژ کرد.
حتی در این موارد، توانایی تولید مستر بچهایی برای تقاضاهای متغیر بازار مطلوب است.
ستون آخر همچنین برای چنین اهدافی نیز قابل اعمال میباشد.
بیشترین مقدار تولید پلی کربنات از روش فسژنیزاسیون بین سطحی میباشد که ارزانتر از فسژنیزاسیون محلولی با پیریدین بعنوان گیرنده اسید میباشد.
جنرال الکتریک در ابتدا روش دوم را شروع کرد.
اما بتدریج از آهک بعنوان گیرنده اسید برای توسعه استفاده نمود، با وجود عدم ارزیابی این روش، اما انتظار میرود که هزینهها قابل رقابت با فسژنیزاسیون بین سطحی باشد زیرا نیازی به بازیافت پیریدین نیست.
هزینه تولید پلی کربنات عموماً به هزینه مواد علی الخصوص به هزینه بیس فنول A بستگی دارد .
جنبههای تکنیکی: در کنار پیشرفتهای تکنولوژی، در سالهای اخیر توجه به محیط زیست و ایمنی بیتشر شده است.
کلیه این فاکتورها در طراحیهای این گزارش و همچنین گزارش بروز شده PEP50 در نظر گرفته شده است.
همچنین مقالات اخیر اثر جدی خوردگی فلزات تجهیزات را بر روی پایداری پلی کربناتها نشان میدهد.
در نتیجه مواد مقاومتری نسبت به قبل در اینجا مشخص شدهاند.
در نتیجه تغییرات پروسس از دو گزارش نبایستی مستقیماً مقایسه شوند.
فسژنیزاسیون محلولی منجر به حلالیت پلیمر و منومرهای واکنش نداده در متیلن کلراید حاوی پیریدین و هیدروکلرید آن میشود.
شستشو با آب اسیدی پیریدین و هیدروکلراید آن را از بین میبرد.
اما تأثیری در از بین بردن منومر ندارد منومر و پلیمرهای با جرم ملکولی پایین ( الیگومر) بویژه در پلیمرهایی که با غذا در تماس هستند نامطلوب میباشند.
از بین بردن کامل این اجزا با یک سیستم رسوب 2 مرحلهای امکان پذیر است.
ضد حلال تازه (هپتان) در تماس با ماده جدا شده، مایع شامل منومر و الیگومر را حل کرده و دو غاب حاصل از صافی عبور می کند.
ماده عبور کرده از صافی در مرحله اول پلیمر را رسوب میدهد.
ماده عبور کرده از صافی که شامل حلال، ضد حلال، منومر و الیگومر میباشد، تقطیر میشود تا مقداری از ضد حلال جدا شود.
ماده پایین برج توسط بخار (محلول ضد حلال بالای برج) دوباره تقطیر شده تا از سطح های انتقال حرارت جلوگیری شود که میتواند توسط الیگومرهای ویسکوز آلوده گردند.
در عین حال پیریدین توسط تقطیر در سیستم قلیایی باز یافت شده و پلیمر رسوب شده خشک سپس آلیاژ و اکسترود شده و بصورت چیپهایی بریده میشود.
تجهیزات زیادی برای بازیافت مواد از جریانهای پس ماند و همچنین مصرف ضایعات بکار گرفته شده است.
فسژنیزاسیون بین سطحی شامل حلالیت منومر در محلول آبی قلیایی و تمامی آن با فسژن در حضور فاز حلال (متلین کلراید) میباشد یک کاتالیست مانند تری اتیل آمین بکار گرفته میشود.
متغیرهای پروسه از زمان اضافه نمودن کاتالیست فرق میکند.
پلیمر در متین کلراید حل می شود و بازیافت پلیمر از حلال مانند فسژنیزاسیون محلولی میباشد.
با این تفاوت که نیازی به بازیافت پیریدین نمیباشد.
کارایی بازیافت حلال در فسژنیزاسیون بین سطحی بیشتر از کارآیی آن در فسژنیزاسیون محلولی میباشد.
بنابراین فقط قسمتی از مزیت اقتصادی نشان داده شده در جدول 2-1 بدلیل حذف پیریدین از سیستم میباشد.
خشک کردن پلیمر از یک سیستم آبی احتمالاً بسیار سختر از خشک کردن آن از یک سیستم غیرآبی میباشد.
اما ما اطلاعات تجربی در این زمینه نداریم.
در کنار رسوب پلیمر با ضد حلال، می توان پلی کربنات را با تبخیر حلال نیز بازیافت نمود.
اما فرآیند تبخیر کامل حلال مستلزم کار با یک ماده بسیار ویسکوز میباشد.
بعنوان راه حل دیگر، یک محلول غلیظ را می توان قلیایی کرد تا ژل تشکیل شود که آنرا خشک و خرد کرد.
این روشها سخت و هزینه بر بنظر میرسد و برای جداسازی منومرو الیگومرها مناسب نمیباشند.
بنابراین در کلیه طراحیهای این گزارش به غیر از ترانس استریفیکاسیون پلیمر توسط ضد حلال بازیافت میشود.
در روش ترانس استریفیکاسیون از حلال استفاده نمیشود.
در راکتور فسژنیزاسیون بین سطحی که توسط ایدمیتسو طراحی شده است، بیس فنون A را در محلول قلیایی با فشرده اضافی در حضور متیلن کلراید در جریان توربولونت مجاور میسازد.
و یک محلول که با کلروفرم اختتام یافته است تولید میشود.
این ماده با محلول بیس فنول A اضافی و اختتام دهنده زنجیر در حضور کاتالیست کاند نس میشود.
3- وضعیت صنعت کاربردهای پلی کربنات بدلیل پیشرفتهای تکنولوژیکی تولید پلیمر و تجهیزات بهمراه قیمت قابل رقابت بسیار افزایش یافته است.
با پیشرفت تکنولوژی گریدهای مختلفی هم اکنون در دسترس میباشد.
جدول 3-1 گریدها و طراحی های مختلف تولیدکنندگان پلیمر خالص بهمراه تولید کنندگان آلیاژها و پلیمرهای تقویت شده را نشان میدهد.
این اطلاعات از طریق مجلات، مقالات تهیه گردیده و توسط تعدادی از تولید کنندگان بازنگاری شده است.
شیمیایی میتسوبیشی گاز، (Mitsubishi Gas chemicd) که در جدول 3-1 نوشته شده است، جانشین شیمیایی میتسوبیشتی ادوگاوا (Mitsubishi Edogawa) بوده که در گزارش PEP 50 آورده شده است.
یکی از پیشرفتهای مهم از گزارش PEP 50 ، قالب گیری بادی میباشد که در آن یک روده حول یک هسته تزریق شده و سپس به شکل قالب باد میشود.
پلی کربناتی که برای این منظور تولید میشود، که نیازی به رفتار غیر نیوتنی ندارد ، هم قیمت گرید تزریق استاندارد میباشد که بایستی بگونهای فرآیند شود تا رفتار غیرنیوتنی از خود نشان بدهد.
علاوه بر این، قالبگیری تزریقی بادی مشکلات مربوط به کارکردن و بازیافت قطعات کوچک و اضافی که در قالبگیری اکستروژن بادی وجود دارد را ندارد.
بنا به این دلایل مصرف قالبگیری بادی ترزیقی روز به روز برای پلی کربنات همانند پلیمرهای دیگر رشد میکند.
محصولات موبای و بایر برای قالبگیری بادی استفاده میشود اما در جدول 3-1 در ستون مربوط نوشته نشده است.
بنا بدلایل ایمنی، مصرف گریدهای مقاوم در برابر شعله روز بروز افزایش مییابد.
بنابراین گریدهای جدید به بازار معرفی میشوند.
بنابراین تغییراتی در نام گریدها مانند SE و NB مورد انتظار است زیرا کلمات «خود خاموش کن «self extinguishing » و «آتش نگیر non burning» از نظر مصرف کنندگان میتواند گمراه کننده باشد.
محصولات جدید شامل گرانولهای قابل فوم شدن و پودرهای قابل تزریقگیری چرخشی میباشد.
گرانولهای قابل فوم، به صورت اشیاء با دانسیته کم، فوم با سلولهای بسته که میتوانند توسط پیچ مانند چوب بهم وصل شوند، اکسترود میشوند.
موارد استفاده آن شامل بستهای ایمنی برای تجهیزات الکتریکی، مصارف الکتریکی، قطعات برای ماشین حسابهای الکترونیکی، مبلمان، پانلهای عایق حرارتی و اجزا ایمنی اتومبیل میباشد.
هر تزریق تا 200 پوند (90 kg) میتواند باشد.
اشیاء بزرگ، پیچیده و بدون دوز را از طریق قالبگیری چرخشی میتوان تهیه کرد که در این روش پودر پلیمر روی دیوارههای در حال چرخش قالب ذوب میشود.
پودرهای قالبگیری چرخشی، در گریدهای مقاوم در برابر uv ها تائید شده توسط FDA و مقاومت در برابر شعله وجود دارند.
بازار ایالات متحده مصرف پلی کربنات در بازار آمریکا در جدول 2-3 نشان داده شده است.
از سال 1965، رشد مصرف پلی کربنات حدود 29% در سال میباشد.
آمارهای اولیه سال 1974 بایستی بازنگری شود؛ مقدار گزارش شده سال 1973 در ژانویه 1975 ، 50% بیشتر از میزان اولیه در ژانویه 1974 میباشد.
تعداد از تقسیمبندیها جدول 3-2 در ذیل بحث شده است.
ساختمان و لعاب شیشه تقسیم بندی ساختمان و لعاب شیشه بیشترین مصرف پلی کربنات (حدود 28% از کل مصرف در سال 1974) را دارد.
بازار لعاب شیشه خصوصاً بدلیل قوانین ایمنی شیشهها - که بسیاری از ایالات آنرا پذیرفتهاند- و همچنین بدلیل هزینه بالای جایگزینی شیشه بدلیل شکستن در مدارس و مکانهای عمومی دیگر، رونق بسیار خوبی داشته است.
مقاومت بالای ضربه پلی کربنات مزیت عمده آن در چنین مصارفی میباشد.
ورقهای پلی کربنات را میتوان پوشش دارد تا خاصیت خراش پذیری و سایش آن بهتر شود.
پلیمرهای دیگری که در صنایع شیشه کاربرد دارند.
عبارتند از : آکریلیکها (که هنوز قسمت عمدهای از بازار را شامل میشوند)، پلی استرها و پلی وینیل کلراید.
ارتباطات و الکترونیک بازار ارتباطات و الکترونیک (والکتریک) حدود 19% بازار مصرف پلی کربنات را در ایالات متحده بخود اختصاص داده است.
قطعات پلی کربناتی برای این صنایع شامل کانکتورها، بلوکهای ترمینال، ترانسفورماتورها، اسپیسرهای خانگی، چراغهای پیلوت، کلیدهای کنترلی، لنز و بسیاری از قطعات تلفن میشود.
خواص ضربه پذیری پلیکربنات به همراه خواص الکتریکی خوب و مقاومت در برابر شعله عامل اصلی تعیین کننده این پلیمر بعنوان اینگونه مصارف میباشد.
پلی کربناتها میتوانند با بسیاری از ترموپلاستیک های مهندسی برای مصارف ارتباطات و الکترونیکی رقابت کنند.
رزینهای فنولیک و پلیمرهای استایرنی متفاوت (شامل ABS) ، با قیمت کمتر پرمصرفترین پلیمر در این بازارها (بجز عایقهای سیم و کابل) می باشد.
قطعات قطعات سومین بازار بزرگ پلی کربنات، حدود 15% کل مصرف پلی کربنات را در ایالات متحد ه شامل میشود.
و قطعات شامل تعداد زیادی از لوازم خانگی ( چاقوی برقی، ظرف ویژه بو دادن ذرت، مخلوط کنندهها)، ابزار کوچک (دریل، سایه بان) و قطعات بزرگتر مانند ظروف نگهدارنده مشروب، و ماشینهای فروش میشود.
در بسیاری از این مصارف دلیل استفاده از پلی کربنات مقاومت در برابر ضربه و دمای HDT بالا بهمراه عایق بودن آن میباشد.
در بسیاری از این مصارف شفافیت پلی کربنات بهمراه عوامل ذکر شده از اهمیت بالایی برخوردارند.
مواد قابل رقابت دیگر موجود در بازار علاوه بر ترموپلاستیکهای مهندسی، رزینهای فنولیک، پلی پروپلین و ABS میباشند.
گریدهای شفاف پلی سولفونها و ABS با پلی کربناتهای شفاف رقابت میکنند.
علائم و روشناییها رشد روزافزون استفاده از چراغهای روشنایی با شدت بالا در خیابانها، پارکها، پارکینگها و مکانهای عمومی دیگر نیاز استفاده از پلاستیکهای مهندسی مانند پلی کربنات شفاف با د مای HDT بالا را افزایش داده است.
علاوه بر این پلی کربناتها برای مصارف روشنایی دیگر نیز مانند نشانگرها و علائمی که بایستی در برابر شرایط محیطی و ضربه مقاومت کنند مناسب میباشند.
بازار علائم و روشنایی حدود 15% بازار پلی کربنات در سال 1974 بود.
این مقدار رشد قابل توجهی را برای این بازار از سال 1972 نشان میداد زیرا سال 1972 حدود 6.3% پلی کربنات برای اینکار مصرف شده بود.
با وجود اینکه در کاربردهایی که مقاومت حرارتی و مقاومت در برابر ضربه از اهمیت بالایی برخوردار است از پلی کربنات استفاده میشود، اما در مصارفی که نیاز به خواص فوق کمتر است از آکریلیکها و پلی استایون استفاده میشود.
استفاده از این مواد آتشگیر احتمال آتشسوزی را افزایش میدهد.
بنابراین مصارف غیرخطرناک بایستی دقیقاً تعریف شود.
مصارف متفرقه پلی کربنات ها در بسیاری از موارد برای ایمنی، مقاومت بالای ضربه و شفافیت استفاده میشود.
این موارد شامل اسباب بازیهای بچگانه، محافظهای ماشین و شیمیایی، محوطه بانکها و دستگاههای ATM و موارد مشابه میشود.
بازارهای ژاپن: تولید، مصرف و اطلاعات کاربر نهایی پلی کربنات در ژاپن در جدول 3-3 نوشته شده است .
سرعت رشد تولید از سال 1969 تا 1973 برابر %183 در سال میباشد و تولید در سال 1973 بیشتر از %3/24 از سال 1972 بیشتر میباشد.
پلی کربناتها درصد کمتری از پلاستیکهای مهندسی ر ا در ژاپن نسبت به ایالات متحده تشکیل میدهند.
بنابراین تولید کنندگان ژاپنی نسبت به ادامه رشد خوشبین هستند.
سرمایه گذاری و ظرفیتها ظرفیت کارخانههای تولید کنندگان پلی کربنات در جدول 3-4 نشان داده شده است.
طرحهای توسعه ای نیز نوشته شده است.
اما چنین طرحهای تغییر داده شدهاند.
این جدول نشان میدهد که بایر و جنرال الکترویک 2 غول بزرگ تجارت میباشند و موبای سومین تولید کننده اما با فاصله دورتر میباشد.
با وجود اینکه گزارشهای چاپ شده ظرفیت موبای را اعلام کردهاند، اما هیچگونه اعلامیه رسمی در این مورد چاپ نشده است.
بعضی از منابع صنعتی مقادیر کمتری را پیشبینی میکنند، اما مقادیر اعلام شده تا حد زیادی درست بنظر می رسد.
عمده ظرفیت مربوط امروزه از نوع فسژنیزانیزاسیون بین سطحی میباشد شیمیایی میتسوبیشی- گاز ظرفیت هر دو خط تولید فسژنیزاسیون بین سطحی و ترانس استریفیکاسیون را افزایش میدهد.
بدلیل ظرفیت کم، استریفیکاسیون احتمالاً بر دوس بچ (batch) انجام میشود.
پروسه ایدمیتسو از روش فسژنیزاسیون پیوسته استفاده میکند.
اما در موارد دیگر مشخص نیست.
سرمایهگذاری برای طرحهای پلی کربنات بصورت دقیق گفته نشده اند.
علی ایحال، جنرال الکتریک اعلام کردهاست که کلاً 75 میلیون دلار برای ظرفیت 150 میلیون تن بر سال سرمایهگذاری کرده است.
همچنین توسعه تی جان (Teiyan) با ظرفیت 5/14 میلیون تن در سال هزینهای معادل 10 میلیون دلار در برداشت .
عرضه پلیمر در سال اخیر بدلیل عرضه کمتر ظرفیت اسمی کارخانهها بسیار کساد بود.
این کسادی بدلیل کاهش عرضه مواد اولیه بود.
اما احتمال اینکه تقاضا برای یک گرید خاص ظرفیت کارخانه را محدود کرده است و یا آمار غیر دقیق میباشند نیز بایستی در نظر گرفته شود.
ایدمیتسو کارخانه خود را طبق گزارشات – بدلیل کمبود منومر متوقف کرد و فرآیند را تحت لیسانس به میستوبیشی و ANIC واگذار نمود.
شرایط لیسانس ایدمیتسو به ANIC مقدار 300 میلیون (تقریباً 1 میلیون دلار) پیش پرداخت و 2% قیمت فروش برای 5000 تن بر سال 1.5% برای فروش بیش از آن تا 10 سال بود.
جزئیات لیسانس بایر به تولید کنندگان ژاپنی دقیقاً مشخص نمیباشد.
طرحهای روسی که در جدول اشاره شده است در یک مقاله لهستانی گزارش شده است.
زیرمجموعه ماربون (Marbon) از برگ- واریز (Borg warner) فیبر فیل از صنایع دارت، LNP و ترموفیل، هیچکدام تولید کننده پلی کربنات خالص نبوده و آلیاژها و رزینهای تقویت شده عرضه می کنند.
و اطلاعاتی در مورد ظرفیت کارخانه در دست نمیباشد.
صنایع رولند (Rowland) ورق پلی کربنات را از لکسان (Lexan) و مرلان (Merlan) تولید میکند.
در زمان تدوین، رولند در حال تسویه حساب بوده و بازرگانی ورقها را به روم و هاس (Rohm & Hoss) به قیمت 4.5 میلیون دلار واگذار نمود.
رولند دلیل این کار را به مشکل بوده رقابت یک شرکت کوچک در یک زمینه حساس به سرمایه عنوان کرده روم و هاس، تولید کننده ورقهای آکریلیک (pelexiglas) ، در حال افزایش مشارکت خود را در زمینه لعابهای شیشه می باشد.
در ژاپن شیمیایی تاکیرون (Takiron) دارای یک کارخانه اکستروژن ورق پلی کربنات با ظرفیت سالیانه 1200 تن (2.6 میلیون پوند) در آبوشی (Aboshi) میباشد.
این شرکت احتمالاً تنها شرکت باقیمانده و مستقل میباشد.
در آلمان ، بایرو روم (Roehm) اقدام به تشکیل یک شرکت مشترک بنام ماکروفرم (Makroform) نمودند تا محصولات پلی کربناتی نیمه کامل تولید کنند.
ظرفیت تولید برای ما معلوم نیست.
رو هم (Roehm) تلفظ انگلیسی نام روهم (Ruhm GMBH) میباشد که یک شرکت تابع بنام روهم و هاس (Rohm & Hass) دارد.
بهر حال روهم و هاس (ایالات متحده) بدلیل قوانین بعد از جنگ جهانی دوم تمایلی به شرکتهای آلمانی ندارد.
جنرال الکتریک کانادا یک خط تولید ورق اکستروژن در بندر هوران، انتوریا سنتوریا (Huran, Ontario) دارد.
سرعت عملیات بر پایه ظرفیت تولید 190 ملیون پوند بر سال در ایالات متحده مصرف 112.6 میلیون پوندی برابر 59% ظرفیت تولید در سال 1974 بود در جدول 2-3 دسته غیره شامل صادرات میشود.
در نتیجه تولید بایستی با مصرف برابر شود.
همانطور که قبلاً گفته شد، اولین تخمین از مصرف کل در سال 1973 تا 30% در حساب های نهایی تجدید نظر شده که باعث تردید در دقت اعداد مربوط به سرعت تولید شد.
کمبود مواد اولیه در نیمه اول سال 1974 باعث محدودیت رشد شد.
بحران اقتصادی باعث اختتام سریع کمبود مواد خام و محصولات در نیمه دوم شد.
بدلیل اینکه طبق برنامهریزی واحدهای جدید تولید در طول سال 1974 تکمیل خواهند شد، ظرفیت تولید سالیانه بطور دقیق مشخص نیست.
ظرفیت تولید در انتهای سال 1973 حدود 43 میلیون پوند بر سال بود.
در نتیجه تولید 38.3 ملیون پوند در سال 1973 برابر با %89 ظرفیت تولید بود.
تولید در سال 1974 (حداقل در 6 ماهه اول) بدلیل کمبود مواد اولیه محدود شد.
مواد خام مواد اولیه پلی کربنات بیس فنون A و فسژن می باشد.
گزارش PEP 81 در مورد این مواد و همچنین تترابرموبیس فنول A میباشد.
قیمت لیست قیمت اخیر برای پلی کربنات در ایالات متحده در جدول 5-3 نشان داده شده است.
قیمت های واقعی در دسترس نمیباشند.
4- آنالیز و مقایسه پروسه مزایا و معایب گزارش شده فرایندهای مختلف پلی کربناتها ، مانند نیاز به دمای بالا و یا جداسازی حلال، زمانی مؤثر هستند که روی هزینه کل تأثیر گذار باشند.
این بحث روی هزینه، کیفیت و نیازهای غیرضروری فرآیند در روشهای مختلف تأکید خواهد داشت.
فرآیند ترانس استریفیکاسیون کمترین پتانسیل را برای تولید پلی کربنات با کیفیت خوب دارد.
انتهای زنجیرهای پلیمر گروههای فنیل قرار دارند که به اندازه پاراترشیاری بوتیل فنیل (PTBP) پایدار نیستند.
باقیمانده کاتالیست با وجود غیرفعال شدن، جدا نمیشود.
در این روش فرآیند مذاب، از حلال استفاده نشده و در نتیجه گریدهای اکستروژن و ریختهگری حلالی (Solvent Casting) را بدلیل ویسکوزیته بالا نمیتوان تولید کرد.
نهایتاً هر گونه منومر و الیگومر باقیمانده درون محصول مانده و یک خطر جدی برای مواد خوراکی، در صورت تماس با آنها، بشمار میآید.
زیرا از جدایش توسط حلال نمیتوان استفاده کرد.
با توجه به هزینه فرآیند ترانس استریفیکاسیون ارزان ترین فرآیند تولید پلیمر با گرید تزریق میباشد.
بدلیل عدم توانایی این روش برای تولید تمامی گریدها، حجم تولید در بازار از طریق این روش کمتر از روشهای دیگر میباشد.
در نتیجه مسائل اقتصادی برای مقیاس بزرگتر بسته به شرایط ممکن است منجر به انتخاب روشهای دیگر شود.
پلیمر با کیفیت بالا در تمام گریدها را بایستی یا از روش فسژنیزاسیون محلولی و یا فسژنیزاسیون حلالی تهیه کرد.
مشکلات مربوط به خالصسازی در این دو روش تفاوت دارند: اما خلوص کافی را میتوان با طراحی مناسب بدست آورد.
برای مثال جدا کردن پیریدین مورد استفاده در فرآیند محلولی بسیار سختتر از تری اتیلی آمین مورد استفاده در فرآیند بین سطحی میباشد هر کدام ترکیب جز پایداری پلیمر را کم کرده و در بعضی از مصارف خطرناک خواهد بود.
قلیا مورد استفاده در فرآیند بین سطحی میتواند بطور مؤثری منومر را بزداید، اما شستشوی اسیدی مورد نیاز برای زدایش پیریدین در فرآیند محلولی، حلال خوب برای ترکیبات فنولیک نمیباشد.
بهرحال ، رسوب و دوباره خمیر کردن برای زدایش ترکیبات فنولیک در روش دوم بایستی به دفعات کافی انجام شود.
این آنالیز بدون اطلاعات مقایسهای انجام میشود.
و امکان این وجود دارد که با یک روش نتوان بصورت عملی به کیفیتی برابر با روش دیگر در بعضی از گریدها رسید.
بر طبق پیش بینی، هزینه، فرآیند محلولی بدلیل پیچیدگی بازیافت پیریدن هزینه برتر از روش بین سطحی میباشد.
این نتیجهگیری فقط در صورتیکه از مواد ارزان در سیستم محلولی بدون آب استفاده شود میتواند اشتباه باشد.
انتخاب مواد ترکیبی بدون استفاده از اطلاعات احتمالاً متغیرترین مرحله در این محاسبات خواهد بود.
مشکل عمده خوردگی در حین تولید نمیباشد بلکه آلودگی محصول توسط آثار خوردگی بوده چه در حین عملیات عادی تولید میشود و چه در حین توقف سیستم.
فسژنیزاسیون محلولی در ابتدا توسط جنرال الکتریک مورد توجه قرار گرفت.
اما طرحهای اصلی توسعه جنرال الکتریک تا به امروز آشکار نشده است پیشنهاداتی در پتنتهای جنرال الکتریک وجود دارد که در فرآیندی بجای پیریدین از یک پذیرنده اسید جامد، مانند آهک استفاده شود.
بدلیل حذف بازیافت پیریدین، هزینه چنین فرآیندی، میتواند با روش بین سطحی رقابت کند.
اما مشکل انتقال و کار با ماده جامد هزینه کم آنرا جبران میکند.
کلیه طراحیهایی موجود، بجز ترانس استریفیکاسیون، شامل بازیافت پلیمر از محلول توسط رسوب با ضد حلال می شود.
در این روش امکان تولید پلیمر با بالاترین کیفیت، بدلیل حذف منومرها و الیگومرها وجود دارد.
تبخیر مستقیم حلال کم هزینهتر میباشد اما امکان تولید با این درجه از خلوص را نخواهد داشت.
علاوه برا ین عملی بودن این روش مشکوک میباشد بخصوص برای گریدهای با ویسکوزینه بالاتر.
مشابه با آن از طریق بازیافت از ژل، خرد کردن، و سپس خشک نمودن نمیتوان به این درجه از خلوص رسید.
و احتمال آلودگی بیشتر از تجهیزات وجود دارد.
ارزیابی ما نشاندهنده آنست که فرایند راکتور پیوسته از فرآیند فسژنیزاسیون بین سطحی پیوسته گرانتر میباشد.
اولین استدلال در این مورد، زمان اقامت طولانی در راکتورهای ناپیوسته (batch) در مرحله پلی کندانساسیون که بعد از آن راکتور پیوسته قراردارد میباشد.
طراحی فقط بر اساس اطلاعات موجود میباشد.
اما مشخص نیست که زمان اقامت طولانی واقعاً مورد نیاز میباشد یا نه.
همچنین آیا هزینه طراحی اپتیم قابل رقابت با فسژنیزاسیون بین سطحی میباشد یا نه.
هزینه فرآیند بچ اندکی بالاتر از فرایند پیوسته با سرعت تولید یکسان میباشد زیرا نیروی انسانی و برق بیشتری مورد نیاز است.
سیستم واکنش تنها قسمت کوچکی از کل کارخانه بوده و بنابراین اختلاف زیاد نمیباشد.
فرآیند ناپیوسته با کاهش ظرفیت و افزایش تعداد محصولات سیستم ناپیوسته مورد توجه بیشتر قرار میگیر د.
ظرفیت طراحی برای این گزارش تا حدی کمتر از ظرفیت کارخانههای امروزی میباشد.
اما تعداد گریدهای عرضه شده برای فروش نشاندهنده آنست که کارخانه از چندین واحد بجای یک خط تولید تشکیل شده است.
اقتصاد در قسمتهای مختلف بررسی میشود و در خلاصه با هم مقایسه میشود.
5) پلی کربنات توسط پلی کندانسیاسون در محلول در فرآیندهای تولید پلی کربنات که از آمینهای نوع سوم (خصوصاً پیریدین) محلول در مخلوط واکنش بعنوان گیرنده اسید استفاده میشود بنام پلی کندانسیون محلولی شناخته میشود.
فرآیندهایی که از گیرنده اسید جامد استفاده میکنند نیز شامل این گروه میشوند.
شیمی و کل فرآیندهای این طبقهبندی مورد بررسی قرار گرفتهاند.
فرآیند گیرنده پیریدین از گزارش PEP 50 بازنگری شده است .
واژه «پلی کندانساسیون بین سطحی» برای فرایندی که دو فاز مایع جدا در تماس بکار می رود.
شیمی در اولین روش تجاری پلی کندانساسیون محلولی، فشژن با بیس فنول A و اختتام دهنده زنجیر در حضور گیرنده اسید (پیریدین) و حلال پلیمر واکنش میدهد.
علاوه بر این اجزا مورد نیاز، عوامل شاخهای کننده و افزودنیهای دیگری بنا به گرید تولیدی نیز ممکن است حضور داشته باشند.
شیمی این فرایند در گزارش PEP 50 نوشته شده است.
محققان اتحادیه کرباید (Carbide) یک فرایند 2 مرحلهای که در آن دی کلروفرمات بیس فنول A از فسژنیزاسیون بیس فنول A در کلروبنزن در دمای Cْ 133 (271 f) تولید می شود، ارائه شده است، و محصول با بیس فنول A با استفاده از کاتالیست منگنز در حلال O- دی کلروبنزن در دمای C ْ180 (Fْ356) کندانس میشود.
هدف از این عمل تسهیل کنترل نسبت استکیومتری واکنش دهندهها میباشد.
محققان به فرایند دو مرحلهای فسژنیزاسیون بیس فنول A در کلروبنزن در دمای Cْ133 (Fْ 271) توسط کاتالیست آلومینیوم کلراید برای تشکیل پرپلیمر و پس گرم کردن پرپلیمر در O- کلروبنزین با اکتیو منیزیوم توجه زیادی نکردند.
شیمی این واکنشها بصورت حدودی مطالعه شده است.
بدلیل اینکه این روشها بصورت تجاری در نیامده است.
جزئیات در اینجا مورد بحث قرار نخواهد گرفت.