معادله (واژه فارسی: هَمچَند[۱]) در ریاضیات بیان برابری دو چیز با استفاده از نمادهاست.
در تمام معادلهها علامت تساوی (=) دیده میشود.
هر معادله دو طرف دارد که در دو طرف علامت تساوی ظاهر میشوند.
در ریاضی معادله معمولاً بیان برابری دو عبارت است که در یکی یا هردوی آنها متغیر یا متغیرهائی وجود دارند.
معادلههائی که فارغ از ارزش (یا مقدار) متغیرها همواره درست باشند، اتحاد نامیده میشوند.
مثلاً معادله x − x = 0 اتحاد است چون x هر چه باشد این برابری همواره درست است.
ولی معادله x + 1 = 2 اتحاد نیست چون فقط اگر مقدار x عدد ۱ باشد این برابری برقرار است.
مقادیری از متغیرها را که باعث برقراری رابطه برابری در معادله میشود، "جواب معادله" مینامند.
مثلاً در مثال قبل عدد ۱ جواب معادله است.
پیدا کردن جواب معادله را "حل معادله" مینامند.
برای حل معادله باید از خوش تعریفی توابع استفاده کرد مثلاً تابع f(x) = x − 1 را بر دو طرف تساوی اثر داده و معادله جدیدی بدست می آوریم مثلاً در مثال قبل بدست می آوریم: x + 1 − 1 = 2 − 1 x = 1 برای اینکه به جواب برسیم باید توابعی را اثر دهیم که x تنها در یک طرف معادله باشد.نکته مهم اینجاست که وقتی تابع یک به یک باشد جواب دو معادله باهم برابر است.
در ریاضیات، یک معادله از یک یا چندین متغیر تشکیل شده است که میتواند یک یا چندین جواب داشته باشد.در یک معادله دو عبارت در دو سوی یک = قرار دارند.و مقادیری که به ازای آنها دو عبارت موجود،مقداری مساوی دارند را جواب معادله گویند.
به عنوان مثال عبارت زیر یک معادله با یک جواب است.
ولی عبارت زیر معادله ای با دو جواب میباشد.
تاریخچه معادلات همراه با اعداد، از اولین دستاورد های ریاضی بشرند.
آنها در قدیمی ترین اسناد ریاضی، مکتوب، فی المثل، در متون میخی بابلیهای باستان، که به هزاره قبل از میلاد بر می گردند، و پاپیروسهای مصری باستان، که به امپراطوری میانه در حدود 1800 ق.م.
بازگشت دارند، آمده اند.
بنا به ساختار جامعه بابلی مسائل مربوط به تقسیم ارث از اهمیت بسیاری برخوردار بودند.
اولین پسر همواره بیشترین سهم را دریافت می کرد، دومی بیشتر از سومی، و به همین ترتیب.
در حالی که مسائل مطرح در بابل ،مجهول نسبتاً واضح توصیف شده است، در پاپیروس های مصری با علامت "h" نمایش داده شده است، که توده یا گردایه را نشان می دهد.
چنین محاسباتی نسبتاً زیاد رخ می دهند و متناظر با معادلات خطی ما هستند.
مقایسه ای بین متنی مصری از پاپیروس مسکو و نماد نویسی جدید این نکته را روشن می سازند.
پیش از این که زبان نمادین جبری مطرح شود، معادلات را بالاجبار با کلمات می نوشتند حتی فرانسواویت که معمولاً به ویتا موسوم است که شایستگی های بسیاری در زمینه جبر دارد از کلمه لاتین برای برابر بودن استفاده می کرد علامت برابری = که امروزه متداول است توسط روبرت رکورد پزشک دربار سلطنتی مطرح شد، اما زمان قابل ملاحظه ای طول کشید تا این علامت مقبولیت عام یافت.
the whetstone of witte وی این طرح را در کتاب درسی جبری که به صورت گفتگو نوشته شده بود و عنوانش "the whetstone of witte" بود مطرح و انگیزه انتخاب ان را با گفتن مطالب زیر بیان کرد «در این مورد همان گونه که قالباً در عمل انجام می دهم یک جفت خط توامان می گذارند این چنین = = =, زیرا هیچ دو شیی نمی توانند برابر محض باشند.
با نوشته شدن کتاب جبر و مقابله توسط خوارزمی در سده های سوم و چهارم هجری ،جبر وارد ریاضیات شد، و به حل معادله ها پرداخته شد.خود واژه جبر به معنای جبران کردن و مقابله به معنای روبه رو قرار دادن دو سوی برابری است.
مجموعه جواب کار با مجموعه معینی از اعداد، موسوم به حوزه اصلی و مجموعه مشخصی از متغیرها که عناصری از حوزه اصلی با زیر مجموعه ای، موسوم به حوزه تغییرپذیری را می توان به جای آنها قرارداد، آغاز می شود.
در مشخص کردن حوزه اصلی و حوزه تغییر پذیری،N به جای مجموعه اعداد طبیعی، Z به جای مجموعه اعداد صحیح،Q به جای مجموعه اعداد گویا،R به جای مجموعه اعداد حقیقی و C به جای اعداد مختلط قرار می گیرد.
کار با مجموعه معینی از اعداد، موسوم به حوزه اصلی و مجموعه مشخصی از متغیرها که عناصری از حوزه اصلی با زیر مجموعه ای، موسوم به حوزه تغییرپذیری را می توان به جای آنها قرارداد، آغاز می شود.
معادله درجه دوم تعریف دایره ، سهمی ، بیضی و هذلولی هستند که معادلهشان حالتهای خاصی از معادله درجه دوم زیر است: بطور مثال دایره: - از معادله درجه دوم فوق بدست آورد.
در واقع خط راست هم حالت خاصی از معادله درجه دوم است هرگاه ولی این شرایط معادله درجه دوم را به یک معادله خطی بجای معادله درجه دوم بدل میکنند جملات جملات درجه دوم میباشند و در حال حاضر رابطه ذکر شده در تعریف را وقتی که لااقل یکی از این جملات درجه وجود داشته باشند بررسی خواهیم کرد.
تاریخچه معادلات درجه دوم و اشکال آنها موارد مورد بحث در هندسه تحلیلی سه بعدی هستند.
هندسه تحلیلی سه بعدی را ریاضیدانان قرن هفدهم میلادی از قبیل فرما ، دکارت و لاهید ابداع کردند.
ولی دستگاه مختصاتی را که ما امروز به کار میبریم ، یوهان برنولی در فاصلهای به لایب نیتس در 1715 صورتبندی کرد.
در قرن هجدهم ، آلکسی کلرو (1713-1765) و لئونهارت اویلر (1707-1783) برجسته ترین ریاضیدانانی بودند که هندسه سهبعدی را گسترش دادند.
بخصوص کلرو معلوم ساخت که یک رویه را میتوان با معادلهای بر حسب سه مختصش نشان داد و برای توصیف خمی در فضا ، دو تا از این گونه معادلهها لازم است.
او ایدههایش را در کتاب "تحقیق درباره خمهای با خمیدگی مضاعف" در 1731 مطرح کرد وی در این کتاب معادلات چندین رویه درجه دوم از قبیل کره – استوانه – هذلولیوار و بیضیوار را آورد.
توجه او در نهایت معطوف به شکل زمین بود که فکر می کرد نوعی بیضیوار باشد.
گاسپار موثر هندسهدان پیشرو قرن هجدهم زیرا مطالب زیادی درباره هندسه تحلیلی سه بعدی نوشت.
ساختمان جمله مخلوط را میتوان با دوران محورها حذف نمود بی آنکه از کلیت مطلب کاسته شود، بنابراین با تبدیل معادله ذکر شده در بخش تعریف به معادله زیر خواهیم داشت: در این صورت معادله فوق: یک خط راست است هرگاه یا یکی از آنها صفر نباشد.
یک دایره است هرگاه ، در حالات خاص ممکن است که به یک نقطه تبدیل شود و یا هیچ مکان حقیقی بوجود نیاورد.
یک سهمی است هرگاه نسبت به یکی از متغیرها خطی و نسبت به دیگری از درجه دوم باشد.
یک بیضی است و هرگاه هر دو مثبت و یا هر دو منفی باشند در حالت خاص ممکن است که بیضی تبدیل به یک نقطه شود و یا هیچ مکان حقیقی بوجود نیارود.
یک هذلولی است هرگاه غیر از صفر و مختلفالعلامات باشند.
در حالات خاص ، مثلا ممکن است که مکان به دو خط متقاطع تبدیل شوند.
برای شناختن منحنی ای که معادلهاش داده شده است: محورها را (در صورت لزوم) دوران دهید تا درجه ناحیه مخلوط حذف شود.
محورها را (در صورت لزوم) انتقال دهید تا معادله به شکلی در آید که قابل تشخیص باشد.
گاهی اوقات مفید است که محکی که مشخص میکند که آیا یک معادله درجه دوم سهمی یا بیضی یا هذلولی است مستقیما در مورد معادله بکار برده شود بیآنکه لازم باشد که آن را بوسیله دوران محورها بصورتی فاقد جمله در آوریم.
با توجه به مطالب بالا اگر محورها را به اندازه زاویهای چون که از رابطه بدست میآید دوران دهیم معادله را به شکل معادل زیر تبدیل میکند: که در آن ضرایب جدید هستند که به ضرایب قدیم مربوطاند.
هر گاه α از رابطه گفته شده انتخاب کنیم در اینصورت حال اگر معادله منحنی مطابق با ضرایب جدیدی اما فاقد جمله باشد آن منحنی: سهمی است هرگاه یا (اما هر دو) صفر باشد و هر دو در معادله وجود داشته باشند.
بیضی است (یا در حالات استثنایی ، یک نقطه ، یا تهی است) هرگاه همعلامت باشند.
هذلولی است (یا در حالات استثنایی یک جفت خط متقاطع است) هرگاه همعلامت نباشند.
ولی میتوان دید که ، برای هر دوران دلخواهی از محورها رابطه زیر بین A ، B ، C و برقرار است: یعنی مقدار تحت هر دورانی از محورها بدون تغییر باقی میماند.
اما وقتی که دوران خاصی را که را صفر کند انجام دهیم طرف راست معادله فوق به شکل ساده تبدیل میگردد.
حالا میتوانیم محک لازم را بر حسب مبین معادله یعنی: مبین بیان کنیم.
میتوان گفت که منحنی: سهمی (یا در حالات استثنایی یک جفت متوازی ، یا یک خط یا یک مکان تهی) است هرگاه: بیضی است (یا در حالات خاص یک نقطه ، یا تهی) هرگاه: هذلولی است ( یا در حالات خاص یک جفت خط متقاطع است) هرگاه: باید توجه کرد که اگر در معادله اصلی هیچ جمله درجه اولی وجود نداشته باشد، در معادله جدید هم وجود نخواهد داشت.
این مطلب از این حقیقت ناشی میشود که دوران محورها درجه هر جمله از معادله را حفظ میکند.
معادلات درجه سوم تاریخچه معادلات درجه سوم برای اولین بار توسط ریاضیدانان هندسی در حدود 400 سال قبل از میلاد مورد توجه قرار گرفت.
در بین ریاضیدانان پارسی، عمر خیام (1123-1048) راه حلی را برای حل معادله درجه سوم ابداع کرد.
او در این روش با استفاده از هندسه نشان داد که چگونه با استفاده از روش هندسی میتوان به جواب عددی معادله رسید با استفاده از جدول مثلثاتی.
همچنین در حول و حوش قرن 16، یک ریاضیدان ایتالیایی به نام scipione، روشی را برای حل کلاسی از معادلات درجه سوم که به صورت میباشند را ادامه داد.
او همچنین نشان داد که تمامی معادلات درجه سوم را میتوان به صورت گفته شده کاهش داد.
ریشههای معادله هر معادله درجه سوم حقیقی حداقل یک جواب حقیقی دارد.
این استدلال نتیجه مستقیم قضیه مقدار میانگین است.
برای معادله درجه سوم یک معادله مشخصهای به صورت زیر بیان میشود که امکان وجود ریشهها را بیان میکند.
بنابراین با فرض موارد زیر نتجه میشود: : آنگاه معادله حتما 3 ریشه مجزا خواهد داشت.
: آنگاه معادله حتما یک ریشه حقیقی و.
یک جفت ریشه مختلط خواهد داشت.
: آنگاه معادله حداقل دو ریشه دارد.
برای تصمیم گیری در مورد اینکه معادله چند ریشه متمایز دارد را به صورت زیر تشکیل میدهیم: حال دو حالت در نظر میگیریم: اگر ، آنگاه هر 3 ریشه تکراری است.
در غیر اینصورت معادله 2 ریشه تکراری و یک ریشه مجزا خواهد داشت.
روش کاردانو برای پیدا کردن ریشههای معادله درجه سوم در ابتدا معادله داده شده را به فرم کلاسیک تبدیل میکنیم، همین معادله داده شده را به ضریب تقسیم میکنیم.
حال با تغییر متغیر: معادله را به فرم زیر تبدیل میکنیم.
بطوری که و معادله به دست آمده را معادله تقلیل یافته مینامیم.
حال فرض میکنیم که بتوانیم اعداد u و v را طوری پیدا کنیم که: حل جواب معادله داده شده با فرض t=v-u به دست میآید این مطلب بطور مستقیم با تعقیب متغیر t در (2) قابل بررسی میباشد.
به عنوان یک نتیجه از اتحاد معادله درجه سوم معادله (3) قابل حل است.
با حل معادله درجه دوم برای v که به دست میآید با قرار دادن این مقادیر در 3 خواهیم داشت که از حل این معادله که یک معادله درجه 2 از میباشد خواهیم داشت حال چون و پس معادلات دیفرانسیل مقدمه معادله دیفرانسیل معادلهای است که شامل یک یا چند مشتق یا دیفرانسیل باشد.
معادلات دیفرانسیل بر اساس ویژگیهای زیر رده بندی میشوند: نوع (عادی یا جزئی) معادله شامل متغیر مستقل x ، تابع (y = f(x و مشتقات f را یک معادله دیفرانسیل عادی مینامیم.
معادله ای متشکل از یک تابع مجهول با بیش از یک متغیر مستقل همراه با مشتقات جزئی آن معادله دیفرانسیل جزئی می نامیم.
مرتبه که عباترت است از مرتبه مشتقی که بالاترین مرتبه را در معادله دارد.
درجه نمای بالاترین توان مشتقی که بالاترین مرتبه را در معادله دارد، پس از حذف مخرج کسرها و رادیکالهای مربوط به متغیر وابسته و مشتقاتش.
معمولا یک معادله دیفرانسیل مرتبه n جوابی شامل n ثابت دلخواه دارد، این جواب را جواب عمومی مینامند.
ساختار معادلات دیفرانسیل ساختارهای متفاوتی هستند و هر ساختار ویژگیهای متفاوتی دارد: معادلات مرتبه اول از درجه اول با متغیرهای جدایی پذیر همگن خطی (برنولی) با دیفرانسیلهای کامل معادلات مرتبه دوم معادلات خطی با ضرایب ثابت: الف) همگن ب) ناهمگن.
تکنیکهای تقریب زدن: الف) سریهای توانی ب) روشهای عددی.
صور مختلف معادلات دیفرانسیل معادله دیفرانسیل مرتبه اول از درجه اول را همواره میتوان به صورت زیر در آورد که در آن M و N معرف توابعی از x و y هستند.
Mdx + Ndy = 0 در معادله فوق هرگاه M فقط تابعی از x و N فقط تابعی از y باشد.
به صورت معادله جدایی پذیر مرتبه اول است.
در این صورت با انتگرال گیری از هر جمله جواب بدست میآید.
یعنی: M(x) dx+ ∫N(y) dy = C∫ معادله دیفرانسیل همگن گاه معادله دیفرانسیلی را که متغیرهایش جدایی پذیر نیستند با تعویض متغیر میتوان به معادلهای تبدیل کرد که متغیرهایش جدایی پذیر باشند، چنین معادلهای را همگن مینامند.
معادله دیفرانسیل خطی مرتبه اول را همیشه میتوان به صورت متعارف زیر در آورد که در آن P و Q توابعی از x هستند.
dy/dx + py = Q معادله را که بتوان آن را به صورت: M (x,y) dx + N(x,y) dy = 0 نوشت و دارای ویژگی زیر باشد کامل نامیده میشود.
زیرا طرف چپ آن یک دیفرانسیل کامل است.
M/∂y = ∂N/∂x∂ معادلات دیفرانسیل مرتبه دوم یک معادله دیفرانسیل مرتبه دوم در حالت کلی به صورت زیر است: F (x,y,dy/dx,d2y/dx2) = 0 این گونه معادلات را معمولا با یک متغیر مناسب مثل dy/dx = p به معادلات دیفرانسیل نوع اول تبدیل کرد و با جاگذاری در معادله مربوط به روش معادلات دیفرانسیل مرتبه اول حل کرد.
معادلات دیفرانسیل خطی معادله دیفرانسیل را که در آن توابع ، ، ...
، و بر بازه I پیوسته بوده و (an(x هرگز صفر نباشد یک معادله دیفرانسیل خطی مرتبه n ام مینامیم.
که البته اگر در تعریف فوق (F(x مساوی صفر باشد، معادله دیفرانسیل D برای مشتق توابع معرفی میشود، سپس با نوشتن معادله کمکی p(r) = 0 و پیدا کردن صفرهای معادله (p(r جواب معادله همگن را پیدا میکنیم.
در صورت ناهمگن بودن علاوه بر عملیات فوق ، جوابهای معادله ناهمگن را با شیوه های خاصی را پیدا کرده به جواب بالا اضافه میکنیم.
حل معادلات دیفرانسیلی خطی مرتبه n ام به توسط سریهای توانی معادله دیفرانسیل را در نظر میگیریم که در آن x0 نقطه منفرد معادلات در این صورت با تغییر متغیر زیر به حل معادله میپردازیم: ، و ...
همین طور با جاگذاری سری مربوط به (F(x و تجریه مناسب و مساوی قرار دادن دو طرف عبارت به حل معادله میپردازیم.
کاربردها کاربردهای معادلات دیفرانسیل توصیف کننده حرکت سیارات ، که از قانون دوم نیوتن بدست میآیند، هم شامل شتاب و هم شامل سرعت میشوند.
در مورد حرکت موشکها در نزدیکی سطح زمین و در فضا ، معادلات دیفرانسیل پیچیده ترند.
مسائل فیزیکی زیادی بعد از فرمول بندی آنها به زبان ریاضی به معادلات دیفرانسیل منجر میشوند.
در رشته سینتیک شیمیایی ، معادلات دیفرانسیل نقش منحصر به فردی به عهده دارند.
همینطور در مواردی چون سود مرکب ، واپاشی رادیواکتیو – قانون سرمایش نیوتن و رشد جمعیت کاربرد فراوانی دارد.
[ویرایش] منابع ↑ آشوری، داریوش، فرهنگ علوم انسانی، انگلیسی به فارسی، تهران: نشر مرکز ۱۳۷۴.
the whetstone of witte در ریاضیات، معادله درجه 3 یک چند جملهای است که بیشترین درجه مجهول آن 3 باشد.
به عنوان مثال معادله یک معادله درجه 3 میباشد، فرم کلی معادلات درجه سوم به صورت نوشته میشود.
که بطور معمول ضرایب معادلهای را حقیقی هستند.
همچنین، همواره منفی بر اینست که در چنین معادلهای باشد.
حل معادله درجه سوم متوجه پیدا کردن ریشههای معادله میباشد.