مجموعه های فازی درواقع تعمیمی برتئوری مجموعه های قراردادی[1] می باشد که درسال 1965 به عنوان روشی ریاضی برای روشن کردن ابهامات درزندگی روزمره توسط زاده[2] معرفی شد. [1].
ایده اصلی مجموعه های فازی ساده است وبه راحتی می توان آن را دریافت. فرض کنید هنگامی که به چراغ قرمز می رسید باید توصیه ای به یک دانش آموز راننده درباره زمان ترمز کردن بکنید. شما می گویید « در74 فوتی چهارراه ترمزکن » یا توصیه ی شما شبیه به این است « خیلی زود از ترمزها استفاده کن »؟ البته دومی ؛ دستورالعمل اول برای انجام دادن بسیار دقیق است. این نشان می دهد که دقت می تواند بی فایده باشد ، تا زمانی که راه های مبهم وغیر دقیق می توانند تفسیر وانجام گیرند. زبان روزمره مثال دیگری است از استفاده وانتشار ابهامات. بچه ها بسرعت تفسیر وانجام دستورالعمل های فازی را یاد می گیرند. (ساعت 10 به رختخواب برو). همه ما اطلاعات فازی نتایج مبهم واطلاعات غیر دقیق را به خاطر می سپاریم وازآن ها استفاده می کنیم وبه خاطر همین مسئله قادر هستیم تا در موقعیتهایی که به یک عنصر تصادفی وابسته است تصمیم گیری کنیم. بنابراین مدل های محاسباتی از سیستمهای حقیقی باید قادر باشند که عدم قطعیت های آماری وفازی را تشخیص دهند ، مشخص کنند ، تحت کنترل خود درآورند ، تفسیر کنند وازآن استفاده کنند.
تفسیر فازی ازاطلاعات یک راه بسیار طبیعی ، مستقیم و خوشظاهر برای فرموله کردن وحل مسائل مختلف است. مجموعه های قراردادی شامل اشیایی است که برای عضویت در ویژگیهای دقیقی صدق می کنند. مجموعه H که اعداد از6 تا 8 می باشد یک CRISP است ؛ ما می نویسیم . به طور مشابه H توسط تابع عضویت (MF)[3] که مطابق زیرتعریف می شود نیز توصیف می گردد.
مجموعه H ونمودار درسمت چپ شکل 1 نشان داده شده اند هرعدد حقیقی r یا درH است یا نیست از آنجا که کلیه اعداد حقیقی را به دو نقطه (1،0) میبرد ، مجموعه Crisp معادل منطق دو مقداره است : هست یا نیست ، روشن یا خاموش ، سیاه یا سفید ، 1 یا 0 . درمنطق مقادیر مقادیر حقیقت[4] نامیده می شوند، با ارجاع به این پرسش « آیا r درH است؟ » جواب مثبت است اگروتنها اگر ؛ درغیراین صورت نه.
مجموعه دیگرF ازاعداد حقیقی که نزدیک به 7 هستند را درنظر بگیرید ازآنجا که ویژگی «نزدیک به 7» نامعلوم است ، تابع عضویت یکتایی برای F وجود ندارد . به هرحال مدل کننده براساس پتانسیل کاربرد و ویژگی ها F باید تصمیم بگیرد که چه باشد . ویژگی هایی که برای F به نظرخوب می رسد شامل این موارد است (I) حالت عادی یا طبیعی (ii) یکنواختی (برای r نزدیکتر به7 ، به 1 نزدیکتراست وبرعکس) و (iii) تقارن (اعدادی که فاصله مساوی از چپ وراست 7 دارند باید عضویت یکسانی داشته باشند).
با توجه به این موارد ضروری هرکدام از توابع نشان داده شده درطرف راست شکل 1 میتواند نمایش مناسبی برای F باشد. گسسته است درحالی پیوسته است ولی هموارنیست (نمودار مثلثی) یک نفر می تواند به راحتی یک MF برای F بسازد به نحوی که هرعدد عضویت مثبتی در F داشته باشد ولی انتظار نداریم برای اعداد « خیلی دوراز7» برای مثال 2000097 زیاد داشته باشیم! یکی از بزرگترین تفاوت ها بین مجموعه های Crisp ومجموعههای فازی این است که اولی همیشه MF یکتایی دارد درحالی که هرمجموعه فازی بینهایت MF دارد که می توانند آن را نشان دهند. این درواقع هم ضعف است وهم قدرت ؛ یکتایی قربانی می شود ، ولی سود پیوسته ای که به خاطر انعطاف پذیری همراه خواهد داشت.
مدل فازی را قادر می سازد که با بیشترین سود دریک موقعیت داده شده تطبیق داده شود. درتئوری مجموعه های قراردادی ، مجموعه های اشیایی واقعی برای مثال اعداد در H معادلند و به صورت ایزومورفیک[5] با یک تابع عضویت یکتا مانند توصیف می شوند. ولی معادل مجموعه ای ، از اشیای واقعی وجود ندارد. مجموعه های فازی همواره ( وفقط) توابعی هستند از «مجموعه جهانی[6]» به نام X به [] . این مسئله درشکل 2 نشان داده شده است که درواقع مشخص می سازد مجموعه فازی تابع است از X به [] . همانطور که تعریف شده هرتابع [] یک مجموعه فازی است.
تازمانی که این در ریاضیات رسمی درست است ، بسیاری از توابع که دراین زمینه توصیف میشوند نمی توانند به طور مناسبی برای تصوریک مجموعه فازی تفسیر شوند . به عبارت دیگر، توابعی که X را به بازه واحد می برند ممکن است مجموعه های فازی باشند ولی تنها زمانی مجموعه فازی می شوند که یک سری ویژگی های غیر دقیق ولی ذاتی ، منطقی وتوصیفی را با اعضای X تطبیق دهند.
اولین سؤال و در واقع سؤالی که معمولا درمورد این طرح پرسیده می شود ، مربوط است به رابطه فازی واحتمال . آیا مجموعه های فازی یک مبدل هوشمند برای مدل های آماری است ؟ درواقع نه . شاید یک مثال کمک کند.
مثال 1: مجموعه همه آب ها رابه عنوان مجموعه جهانی درنظر بگیرید وهمچنین مجموعه فازی { مایعات قابل آشامیدن }=L را داریم . فرض کنید شما یک هفته بدون مایعات درصحرا بوده اید وحالا دو بطری A وB دارید. به شما گفته می شود که عضویت (فازی) مایع درون A در L ، 9/0 وهمچنین احتمال اینکه مایع درون B متعلق به L باشد هم 9/0 است. به عبارت دیگر A شامل مایعی است که با درجه عضویت 9/0 قابل شرب است درحالی که B شامل مایعی است که به احتمال 9/0 قابل شرب است . با این جفت بطری مواجه می شوید وباید ازیکی که انتخاب کرده اید بنوشید ، اول کدام را برای نوشیدن انتخاب می کنید ؟ چرا؟ بعلاوه بعداز مشاهده درباره محتوای دو بطری مقدار (محتمل) برای عضویت واحتمال چه میباشد؟ [ پاسخ این معما درکلاس بحث می شود ] سؤتفاهم رایج دیگردرباره مدل های فازی این است که آن ها به عنوان جایگزین هایی برای مدل های Crisp (یا احتمالاتی) پیشنهاد می شدند. برای توضیح این مسئله نخست از شکل های 1و2 توجه کنید که هرمجموعه Crisp فازی است ولی نه برعکس . بسیاری از طرح ها که ازایده فازی استفاده می کنند آن را از طریق محاط کردن وجا دادن بکار می برند یعنی ما تلاش می کنیم تا ساختارقراردادی را حفظ کنیم وبه آن اجازه می دهیم تا درخروجی هرزمان که میتواند و هرزمان که باید برجسته شود.
مثال 2 : وضع ریاضیدان اولیه را درنظر بگیرید ، او می دانند که سری تیلور برای تابع حقیقی (زنگی شکل) در واگرا است ولی نمی تواند بفهمد چرا ، مخصوصا که f دراین نقاط بی نهایت بار مشتقپذیر است. امروزه به عنوان دانش معمول هر دانش آموز ازتوابع مختلط تابع دو قطب در دارد. بنابراین تابع مختلط که محاط شده به وسیله صورت کسر است ، نمی تواند بسط سری توانی همگرا درنقطه ای روی مرز دایره به شعاع واحد درصفحه داشته باشد ؛ درحالت خاص در ، یعنی درنقاط حقیقی . این مثال یک اصل کلی در ریاضیات مدلی را نشان می دهد . یک مسئله حقیقی (ظاهراً لاینحل) را درنظر بگیرید ؛ فضا را گسترش بدهید وجواب را دراین فوق مجموعه[7] خیالی جستجو کنید درنهایت جواب بدست آمده را به قیدهای حقیقی اولیه محدود کنید.
درمثال 2 ما درمورد پیچیده سازی[8] تابع f بوسیله محاط کردن یا درنظر گرفتن اعداد حقیقی درصفحه مختلط صحبت کردیم ، درادامه با عمل آسان سازی[9] ازنتیجه کلی برای حل مسئله اصلی استفاده می کنیم . بسیاری از مدلهای فازی از طرح مشابهی پیروی میکنند مسئله های واقعی که شامل عدم قطعیت های آماری نمی باشند ابتدا « فازی» می شوند سپس یک نوع آنالیز وتحلیل برروی مسئله بزرگترصورت می گیرد و درنهایت نتیجه برای حل مسئله اصلی خاص و ویژه می شود.