دانلود تحقیق نور

Word 41 KB 32910 12
مشخص نشده مشخص نشده فیزیک - نجوم
قیمت قدیم:۱۲,۰۰۰ تومان
قیمت: ۷,۶۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • نور خیابان در شب برای دیگر کاربردها نور (ابهام‌زدایی) را ببینید.

    برای دیگر کاربردها پرتو (ابهام‌زدایی) را ببینید.

    نور مرئی (که معمولا بطور خلاصه نور گویند) تابش الکترومغناطیسی است که به چشم انسان [و دیگر بینندگان!] مرئی و مسئول حس بینایی است.

    نور مرئی با طول موجی از حدود 380 تا حدود 740 نانومترجای دارد.

    محدوده نور مرئی بین دو نور نامرئی مادون قرمز ، که در طول موج های بلندتر و نور نامرئی ماوراء بنفش ، که در طول موج های کوتاه تر یافت می شود قرار دارد.

    به نور در فارسی پرتو هم می گویند.

    پرتو Parto دارای تعریف دقیقی نیست، جسم شناخته شده یا مدل مشخص که شبیه آن باشد وجود ندارد.

    ولی لازم نیست فهم هر چیز بر شباهت مبتنی باشد.

    نظریه الکترومغناطیسی و نظریه کوانتومی با هم ایجاد یک نظریه نامتناقض و بدون ابهام می‌کنند که تمام پدیده‌های نوری را توجیه می‌کنند.

    نظریه ماکسول درباره انتشار نور بحث می‌کند در حالیکه نظریه کوانتومی بر هم کنش نور و ماده یا جذب و نشر آن را شرح می‌دهد ازآمیختن این دو نظریه، نظریه جامعی که الکترودینامیک کوانتومی نام دارد، شکل می‌گیرد.

    چون نظریه‌های الکترو مغناطیسی و کوانتومی علاوه بر پدیده‌های مربوط به تابش بسیاری از پدیده‌های دیگر را نیز تشریح می‌کنند منصفانه می‌توان فرض کرد که مشاهدات تجربی امروز را لااقل در قالب ریاضی جوابگو است.

    سرشت نور کاملاً شناخته شده‌است اما باز هم این پرسش هست که واقعیت نور چیست.

    سرعت نور : سرعت نور سرعت نور در خلاء دقیقا برابر است با ۲۹۹٬۷۹۲٬۴۵۸ متر بر ثانیه (تقریبا ۱۸۶٬۲۸۲ مایل بر ثانیه).

    چون هم اکنون در دستگاه SI از یکای متر استفاده می‌شود، سرعت دقیق نور نیز با یکای متر تعریف شد.

    در گذشته، فیزیکدان‌های بسیاری تلاش کردند تا سرعت نور را بدست آورند که از میان آنان می‌توان به گالیله اشاره کرد که در قرن ۱۷ میلادی تلاش کرد تا سرعت نور را بدست آورد.

    همچنین اوله رومر، فیزیکدان دانمارکی در سال ۱۶۷۶ آزمایشی طراحی کرد تا با کمک یک تلسکوپ بتواند سرعت نور را اندازه بگیرد.

    وی گردش مشتری و یکی از ماه‌های آن آیو، را زیر نظر گرفت.

    او محاسبه کرد که ۲۲ دقیقه طول می‌کشد تا نور قطر مدار زمین را بپیماید[۱].

    شور بختانه در آن زمان داده‌ها کافی نبود؛ اگر رومه قطر مدار زمین را داشت، سرعتی که برای نور می‌توانست بدست آورد ۲۲۷٬۰۰۰٬۰۰۰ متر بر ثانیه بود.

    اندازه‌گیری دقیق‌تری که برای بدست آوردن سرعت نور انجام شد در سال ۱۸۴۹ از سوی هیپولیت فیزو (به فرانسوی: Hippolyte Fizeau) بود.

    او پرتوهایی از نور را به سمت آینه‌ای که کیلومترها دورتر بود هدایت کرد.

    یک چرخ‌دندهٔ در حال گردش نیز در مسیر نور در فاصلهٔ میان منبع تا آینه و مسیر برگشت تا نقطهٔ مبدا قرار داد.

    او دریافت که با یک نرخ مشخص گردش، نور می‌تواند در مسیر رفت از میان یکی از فضا‌های خالی روی چرخ رد شود و در برگشت از فضای خالی بعدی (سوراخ‌های متوالی) عبور کند.

    با داشتن فاصلهٔ آینه، تعداد دندانه‌های چرخ و نرخ گردش آن، او توانست سرعت نور را ۳۱۳٬۰۰۰٬۰۰۰ متر بر ثانیه بدست آورد.

    در ۱۸۶۲ لئون فوکولت (Léon Foucault) با استفاده از آینه‌های در حال چرخش سرعت نور را ۲۹۸٬۰۰۰٬۰۰۰ m/s بدست آورد.

    آلبرت آبراهام مایکلسون از ۱۸۷۷ تا زمان مرگش ۱۹۳۱ آزمایش‌های بسیاری را برای بدست آوردن سرعت نور طراحی کرد.

    او بر روی آزمایش‌های فوکولت بیشتر کار کرد و روش آینه‌های در گردش را پیش بُرد و تلاش کرد مدتی را که طول می‌کشد تا نور مسیر رفت و برگشت میان کوه ویلسون تا کوه سن آنتونیو در کالیفرنیا را بپیماید بدست آورد.

    مقدار دقیق سرعت نور ۲۹۹٬۷۹۶٬۰۰۰ متر بر ثانیه است.

    گستره طول موجی نور نور گستره طول موجی وسیعی دارد.

    ناحیه نور مرئی از حدود ۴۰۰ نانومتر (آبی) تا ۷۰۰ نانومتر (قرمز) است که در وسط آن طول موج ۵۵۵ نانومتر (نور زرد) که چشم انسان بیشترین حساسیت را نسبت به آن دارد یک ناحیه پیوسته که ناحیه مرئی را در بر می‌گیرد و تا فروسرخ دور گسترش می‌یابد.

    خواص نور و نحوه تولید سرعت نور در محیط‌های مختلف متفاوت است که بیشترین آن در خلاء و یا بطور تقریبی در هوا است در داخل ماده به پارامترهای متفاوتی بر حسب حالت و خواص الکترومغناطیسی ماده وابسته‌است.

    به‌وسیله کاواک جسم سیاه می‌توان تمام ناحیه طول موجی نور را تولید نمود.

    در طبیعت در طول موج‌های مختلف مشاهده شده امّا مشهورترین آن نور سفید است که یک نور مرکبی از سایر طول موج هاست.

    تک طول موج‌ ها آن را به‌وسیله لامپ‌ های تخلیه الکتریکی که معرف طیف‌های اتمی موادی هستند که داخلشان تعبیه شده می‌توان تولید کرد.

    نور گستره طول موجی وسیعی دارد.

    تک طول موج‌ها آن را به‌وسیله لامپ‌های تخلیه الکتریکی که معرف طیف‌های اتمی موادی هستند که داخلشان تعبیه شده می‌توان تولید کرد.

    ماهیت‌های متفاوت نور ماهیت ذره‌ای ایزاک نیوتن در کتاب خود در رساله‌ای درباره نور نوشت: پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می‌شوند.

    احتمالاً نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیط‌های همگن به نظر می‌رسد در امتداد خط مستقیم منتشر می‌شوند که این امر را قانون می‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است.

    برخی دیگر از دانشمندان نیز اظهار داشته‌اند که نوز از ذرات در ارتعاش شدید تشکیل یافته‌است.[۲] نیوتن معتقد بود نور از درون واسطه‌ای به نام اتر گذر می‌کند که غیر مادّی است و دیده نمی‌شود.

    بر اساس نظریه اتر، فضا آکنده است از این واسطه.

    هم اکنون این نظریه باطل شده است و معتبر نمی‌باشد.

    ماهیت موجی هم‌زمان با نیوتن، کریستیان هویگنس (Christiaan Huygens) (۱۶۹۵-۱۶۲۹)طرفدار توضیح دیگری بود که در آن حرکت نور به صورت موجی است و از چشمه‌های نوری به تمام جهات پخش می‌شود به خاطر داشته باشید که هویگنس با به کاربردن امواج اصلی و موجک‌های ثانوی قوانین بازتاب و شکست را تشریح کرد.

    حقایق دیگری که با تصور موجی بودن نور توجیه می‌شوند پدیده‌های تداخلی اند مانند به وجود آمدن فریزهای روشن و تاریک در اثر بازتاب نور از لایه‌های نازک و یا پراش نور در اطراف مانع (توضیح بیشتر در آزمایش دوشکاف).

    ماهیت الکترومغناطیس بیشتر به خاطر نبوغ جیمز کلارک ماکسول (James Clerk Maxwell) (۱۸۷۹-۱۸۳۱) است که ما امروزه می‌دانیم نور نوعی انرژی الکترومغناطیسی است که معمولاً به عنوان امواج الکترومغناطیسی توصیف می‌شود.

    گسترده کامل امواج الکتروو مغناطیسی شامل: موج رادیویی، تابش فروسرخ نور مرئی از قرمز تا بنفش، تابش فرابنفش، پرتو ایکس و پرتو گاما می‌باشد.

    ماهیت کوانتومی نور طبق نظریه مکانیک کوانتومی نور، که در دو دهه اول سده بیستم به وسیله پلانک و آلبرت انیشتین و بور برای اولین بار پیشنهاد شد، انرژی الکترو مغناطیسی کوانتیده است، یعنی جذب یا نشر انرژی میدان الکترو مغناطیسی به مقدارهای گسسته‌ای به نام «فوتون» انجام می‌گیرد.

    E=hν که در آن ν بسامد وEانرژی است نظریه مکملی نظریه جدید نور شامل اصولی از تعاریف نیوتون و هویگنس است.

    بنابرین گفته می‌شود که نور خاصیت دو گانه‌ای دارد بر خی از پدیده‌ها مثل تداخل و پراش خاصیت موجی آن را نشان می‌دهد و برخی دیکر مانند پدیده فتوالکتریک، پدیده کامپتون و ...

    با خاصیت ذره‌ای نور قابل توضیح هستند.

    پرتوهای دیگر فروسرخ:پرتو فروسرخ یا مادون قرمز تابشی است الکترومغناطیسی با طول موجی طولانی تر از نور مرئی اما کوتاهتر از تابش ریزموج.

    از آنجا که سرخ، رنگ نور مرئی با درازترین طول موج را تشکیل می‌دهد به این پرتو، فروسرخ یعنی پایین تر از سرخ می‌گویند.تابش فروسرخ طول موجی میان ۷۰۰ nm و ۱ mm دارد.

    گاما:با توجه به اینکه اشعه گاما دارای تشعشع الکترومغناطیسی است، آن فاقد بار و جرم سکون است.

    اشعه گاما موجب برهمکنشهای کولنی نمی‌گردد و لذا آنها برخلاف ذرات باردار بطور پیوسته انرژی از دست نمی‌دهند.

    معمولاً اشعه گاما تنها یک یا چند برهمکنش اتفاقی با الکترونها یا هسته‌های اتم‌های ماده جذب کننده احساس می‌کند.

    در این برهمکنش‌ها اشعه گاما یا بطور کامل ناپدید می‌گردد یا انرژی آن بطور قابل ملاحظه‌ای تغییر می‌یابد.

    اشعه گاما دارای بردهای مجزا نیست، به جای آن، شدت یک باری که اشعه گاما بطور پیوسته با عبور آن از میان ماده مطابق قانون نمایی جذب کاهش می‌یابد.فروپاشی گاما در فروپاشی گاما، هنگامی که یک هسته تحت گذارهایی از حالات برانگیخته بالاتر به حالات برانگیخته پایین‌تر یا حالت پایه آن می‌رود، تشعشع الکترومغناطیسی منتشر می‌گردد.

    معادله عمومی فروپاشی گاما بصورت زیر است: AZX*-------->AZX + γ که در آنX و X* به ترتیب نشان دهنده حالت پایه (غیر برانگیخته) و حالت با انرژی بالاتر است.

    قابل ذکر است که این فروپاشی با هیچ گونه تغییر در عدد جرمی (A) و عدد اتمی (Z) همراه نیست.

    حالت برانگیخته هسته و حالت با انرژی پایین حاصل شده در اثر نشر پرتو گاما، فقط زمانی به عنوان ایزومر هسته‌ای در نظر گرفته می‌شود که نیمه عمر حالت برانگیخته به اندازه‌ای طولانی باشد که بتوان آن را به سادگی اندازه گیری نمود.

    زمانی که این حالت وجود داشته باشد، فروپاشی گاما به عنوان یک گذار ایزومری توصیف می‌گردد.

    اصطلاحات حالت نیمه پایدار یا حالت برانگیخته برای توصیف گونه‌ها در حالات انرژی بالاتر از حالت پایه نیز به کار می‌رود.

    حالتهای فروپاشی گاما نشر اشعه گامای خالص: در این حالت فروپاشی گاما، اشعه گامای منتشر شده به‌وسیله یک هسته از یک فرآیند فروپاشی گاما برای کلیه گذارها بین ترازهای انرژی که محدوده انرژی آن معمولاً از ۲ کیلو الکترون ولت تا ۷ میلیون الکترون ولت است، تک انرژی است.

    این انرژیهای گذارها بین حالت کوانتومی هسته بسیار نزدیک هستند.

    مقدار کمی از انرژی پس زنی هسته با هسته دختر (هسته نهایی) همراه است، ولی این انرژی معمولاً نسبت به انرژی اشعه گاما بسیار کوچک بوده و می‌توان از آن صرفنظر کرد.

    حالت فروپاشی بصورت تبدیل داخلی: در این حالت فروپاشی، هسته برانگیخته با انتقال انرژی خود به یک الکترون اربیتال برانگیخته می‌گردد، که سپس آن الکترون از اتم دفع می‌شود.

    اشعه گاما منتشر نمی‌شود.

    بلکه محصولات این فروپاشی هسته در حالت انرژی پایین یا پایه، الکترونهای اوژه، اشعه ایکس و الکترونهای تبدیل داخلی است.

    الکترونهای تبدیل داخلی تک انرژی هستند.

    انرژی آنها معادل انرژی گذار ترازهای هسته‌ای درگیر منهای انرژی پیوندی الکترون اتمی است.

    با توجه به اینکه فروپاشی تبدیل داخلی منجر به ایجاد یک محل خالی در اربیتال اتمی می‌شود، در نتیجه فرآیندهای نشر اشعه ایکس و نشر الکترون اوژه نیز رخ خواهد داد.

    حالت فروپاشی بصورت جفت: برای گذارهای هسته‌ای با انرژی‌های بزرگ‌تر از ۱٫۰۲ میلیون الکترون ولت تولید جفت اگر چه غیر معمول است اما یک حالت فروپاشی محسوب می‌شود.

    در این فرآیند، انرژی گذرا ابتدا برای بوجود آمدن یک جفت الکترون – پوزیترون و سپس برای دفع آنها از هسته بکار می‌رود.

    انرژی جنبشی کل داده شده به جفت معادل اختلاف بین انرژی گذار و ۱٫۰۲ میلیون الکترون ولت مورد نیاز برای تولید جفت است.

    پوزیترون تولید شده در این فرآیند نابود خواهد شد.

    منابع دانشنامه رشد.

    سگ‍ل، موکول، آشن‍ایی با نور و لی‍زر، ترجم‍ه پریچ‍هر هم‍ایون‌روز، ته‍ران، ذکر، کت‍ابه‍ای قاصدک، ۱۳۷۶.

  • فهرست:

    ندارد.
     

    منبع:

    دانشنامه رشد.

    سگ‍ل، موکول، آشن‍ایی با نور و لی‍زر، ترجم‍ه پریچ‍هر هم‍ایون‌روز، ته‍ران، ذکر، کت‍ابه‍ای قاصدک، ۱۳۷۶.

نور خيابان در شب براي ديگر کاربردها نور (ابهام‌زدايي) را ببينيد. براي ديگر کاربردها پرتو (ابهام‌زدايي) را ببينيد. نور مرئي (که معمولا بطور خلاصه نور گويند) تابش الکترومغناطيسي است که به چشم انسان [و ديگر بينندگان!] مرئي و مسئول حس بين

تعريف واقعي نور تعريف دقيقي براي نور وجود ندارد، جسم شناخته شده يا مدل مشخص که شبيه آن باشد وجود ندارد. ولي لازم نيست فهم هر چيز بر شباهت مبتني باشد. نظريه الکترومغناطيسي و نظريه کوانتومي با هم ايجاد يک نظريه نامتناقض و بدون ابهام مي کنند که تمام

فصل اول بررسی ماهیت نور و ارتباط آن با پدیده لیزر 1-1- ماهیت نور یونانی ها اولین کسانی هستند که کوشیدند طبیعت نور و چگونگی دیدن را توضیح دهند، بعد از آن، ظهور علوم تجربی دو نظریه مترادف را به ارمغان آورد. یکی از آنها نطریه ذره‌ای نیوتن بود که نور را متشکل از باریکه‌ای از ذرات دانسته که این ذرات تابع قوانین حرکت می‌باشند. نظریه دیگر نظریه موجی هوک و هویگنس است که طبیعت موجی را ...

نور ماهیت ذر‌ه‌ای اسحاق نیوتن (Isaac Newton) در کتاب خود در رساله‌ای درباره نور نوشت پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می‌شوند. احتمالاً اسحاق نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیطهای همگن به نظر می‌رسد در امتداد خط مستقیم منتشر می‌شوند که این امر را قانون می‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است. ماهیت موجی همزمان با ...

نور ماهیت ذر‌ه‌ای اسحاق نیوتن (Isaac Newton) در کتاب خود در رساله‌ای درباره نور نوشت پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می‌شوند. احتمالاً اسحاق نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیطهای همگن به نظر می‌رسد در امتداد خط مستقیم منتشر می‌شوند که این امر را قانون می‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است. ماهیت موجی همزمان با ...

نور ماهیت ذر‌ه‌ای اسحاق نیوتن (Isaac Newton) در کتاب خود در رساله‌ای درباره نور نوشت پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می‌شوند. احتمالاً اسحاق نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیطهای همگن به نظر می‌رسد در امتداد خط مستقیم منتشر می‌شوند که این امر را قانون می‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است. ماهیت موجی همزمان با ...

1- کليات در سيستم هاي قدرت و شبکه ‌هاي انتقال و توزيع انرژي الکتريکي، تک‌تک تجهيزات نقش اساسي دارند و بروز هرگونه عيبي در آنها، ايجاد اختلال در شبکه، اتصال کوتاه و قطع برق را به همراه دارد. خاموشي و جايگزيني تجهيزات معيوب هزينه‌هاي هن

ICP یکی از روش های مخرب تجزیه شیمیایی می باشد که بایستی نمونه را بصورت محلول در آورده و سپس آنرا تبخیر نمود. اصول عملیات: ICP یک منبع تحریک است برای طیف نمایی نشر اتمی. آن یک پلاسمای آرگون بکار رفته در فشار یک اتمسفر و نگهداشته شده بوسیله جفت کردن القایی بصورت یک میدان الکترومغناطیسی با فرکانس رادیویی می باشد. گاز آرگون بصورت محوری در درون یک تیوپ کوارتزی نگه داشته شده بوسیله سه ...

کاربرد های لیزر مقدمه امروزه لیزر کاربردهای بیشماری دارد که همه زمینه های مختلف علمی و فنی فیزیک-شیمی-زیست شناسی - الکترونیک و پزشکی را شامل می‌شود. همه این کاربردها نتیجه مستقیم همان ویژگی‌های خاص نور لیزر است. کاربرد لیزر در فیزیک و شیمی اختراع لیزر و تکامل آن وابسته به معلومات پایه‌ای است که در درجه اول از رشته فیزیک و بعد از شیمی گرفته شده‌اند. بنابراین طبیعی است که استفاده ...

کاربرد های لیزر مقدمه امروزه لیزر کاربردهای بیشماری دارد که همه زمینه های مختلف علمی و فنی فیزیک-شیمی-زیست شناسی - الکترونیک و پزشکی را شامل می شود. همه این کاربردها نتیجه مستقیم همان ویژگی های خاص نور لیزر است. کاربرد لیزر در فیزیک و شیمی اختراع لیزر و تکامل آن وابسته به معلومات پایه ای است که در درجه اول از رشته فیزیک و بعد از شیمی گرفته شده اند. بنابراین طبیعی است که استفاده ...

ثبت سفارش
تعداد
عنوان محصول