گزیده
روش مرز مشخص یک تکنیک برای مدل سازی مرز های الاستیک در سیال ویسکوز غیر قابل فشردگی است . این روش در بسیاری از سیستمهای مهندسی دریستی به کار رفته است شامل مدلهای موازنه بزرگ قلب و حلزون گوش ، این شبیه سازیها پتانسیل ارایه درک پایه ما از سیستمهای زیستی را دارند که در توسعه درمانهای جراحی وابزار کمک میکنند . علیرغم شهرت این روش و تمایل به متعادل ساختن مشکلات برای کسب جزئیات سیستمهای فیزیکی ، موازی سازی برای موازنه بالا ماشین حلقه را ارایه کردن که چالش برانگیز است . دلیل اصلی حیات و تعادل فشار است که در توزیع ساختار آن در فرایند رخ میدهد .
دراین مقوله ما الگوریتم موازی شده برای روش مرزی را توصیف میکنیم که برای موازنه بر اساس پردازندههای چند گانه الگوریتم موازی شده و SMP به کار میرود . این امر با استفاده از زبان تیتانیوم اجرا میشده یک روش محاسبه علمی با عملکرد بالا بر پایه جاوا . بسته نرم افزاری ما به نام IB ، مزیت عملکرد هدف محور تیتانیوم را دارد تا چارچوبی را برای شبیه سازی مرزهایی به کار میرود که روش مرزی را از عملکرد خاص جدا میسازد که ساختار مرزی و نیرو ما را تعیین کرده که برگرفته از آن ساختار است . نتایج ما موازنه طرح و امکانپذیر بودن محاسبات مرز موازنه بزرگ با بسته IB را نشان میدهد .
مقدمه
روش مرز مشخص یک روش عددی کلی برای مدل سازی محاسباتی سیستم ها شامل تعامل با ساختار سیال است . سیستمهای کمپلکس که بافت الاستیک در سیال و سیکوز غرق میشود در مهندسی و زیست شناسی بروز میکند . روش مرز مشخص بوسیله پسکین و مک کوئین ارایه شد تا الگوهای جریان خون در قلب مورد مطالعه قرار گیرد . این به صورت خاص در بسیاری از مشکلات به کار رفته است نظیر تجمع پلاکت در طی لخته شدن خون ، تغییر شکل سلولهای خونی ( گلبولهای قرمز ) در جریان برش ، جریان در رگهای تنگ شده ( تصلب شرائین ) حرکت باکتری اسپرم و جریانی که در مدلهای سه بعدی و دو بعدی حلزون گوش در جریان هستند ، پمپ بدون کنترل و رشته انعطاف پذیر که در یک محیط کف آلود شناور است . برای مورد اخیر تحقیق در محاسبات مرز مشخص و کاربردهای دیگر به قسمت 16 مراجعه کنید .
شبیه سازی مرز مشخص سیستم کمپکس نظیر قلب ، حلزون گوش نیاز به منابع محاسباتی بسیار بزرگ دارد ؛ بررسی مدل قلب براساس Cray Tqo و حلزون گوش بر اساس Hp Saperdome در Caltech تهیه شد . بررسیهای عددی در سیستم اغلب مورد نیاز به ؟؟؟ محاسبه دارد . هم Superolome و هم Tqo Caray ماشینهای حافظه مشترک دارند ، از این دو موازی سازی که سریالی به کمک ابزار موجود به دست می آید .پیچیدگی اصلی سیستم شبیه سازی شده کاربرد شبکههای بهتر را ضروری میسازد که منجر به محاسبات عظیمتر میشوند که قالیتهای سیستمهای حافظه مشترک رابط میدهد . چنین شبکههای محاسباتی برای کاهش خطای عددی و هماهنگی جزئیات سیستم در مدل ضرورت دارند .برای مثال تفکیک پذیری بالاتر در مدل قلب میتواند به مادر درک اختلال حول دریچه ها کمک میکند . به طور مشابه ، در حلزون گوش ، زیر ساختار ارگان مخ کم اهمیت خاصی در فعالیت سیستم دارد .
قلب و حلزون گوش دو مثالی هستند که اثر حاضر را به جریان انداخته و سبب ارایه الگوریتم و بسته نرم افزاری IB برای محاسبات در تیتانیوم میشوند .
تیتانیوم یک زبان موازی با جاوا است که در بر کلی UC ارایه شد تا از عملکرد علمی محاسبه براساس پردازندههای چندگانه با موازنه بالا پشتیبانی کند نظیر ابر رایانهها و بستههای توزیع حافظه با یک یا تعداد بیشتری پردازنده در هر گروه . سایر اهداف زبانی شامل ایمنی ، قابلیت حمل و حمایت از ساختارهای داده پیچیده است .
کاربرد حافظه توزیعی روش فوق بسیار چالش برانگیز است . تلاشهای قبلی شامل نسخه Spil=c است که موازنه ما براساس تفکر CM5 است . و نسخه اولیه تیتانیوم که براساس Cray T3E است . هر ماشین از ارتباط سبک حمایت میکنند . علیرغم نیاز ویژه هیچ کاربرد حافظه توزیعی در مدل مرزی به کار نمی رود . تعامل بین جریان و مرزها منبع اولیه مشکلات اجرا و برنامه نویسی است . درحالیکه ساختار مرزها به حوزه عملکرد بستگی دارد در حوزه جریان توزیع شده است . اگر داده مرز در پردازنده ما توزیع شده ، سیستم نتیجه گیری مقدار قابل توجهی ارتباط نامنظم دارد که برگرفته است نیروهای بین مرزها و تعامل جریان دارد . فضای جهانی تیتانیوم به برنامهنویسی کمک میکند اما اجرا هنوز میتواند شکل ساز باشد اگر تحت افزار به خوبی عمل نکند .
محاسبات فوق براساس فرمول لاگرانگی هستند که شبکههای محاسباتی مجزا برای جریان و مواد درون آن به دست می آیند . جریان یا شبکه سه بعدی مدل سازی میشود ، در حالیکه مواد به صورت مجموعهای از فیبرهای الاستیک مدل سازی میشوند یا پوسته الاستیک ( شبکه دو بعدی ) این چار چوب برای هماهنگی مستقیم مدلهای پیچیده مرز مشخص میشوند . شبیه سازی در مجموعه مراحل زمانی صورت میگیرد که طی هر دوره ، نیروهای الاستیک روی شبکههای مواد محاسبه میشوند، سپس به شبکه جریان بسط مییابند . معادلات جریان با استفاده از سرعت حل میشوند که مرتبط با شبکه مواد است و در نهایت به روز رسانی موقعیت مرتبط با جریان به کارمیروند.
پیچیدگی مرز با اندازه جریان و شبکهها محاسبه میشود با اندازه مرحله زمانی . مدل قلب از شبکه 1283 نقطهای جریان با عضله قلب و دریچه ها استفاده می کند که با مجموعهای از فیبرهای الاستیک درحدود 600000 نقطه مدل سازی شده است . مدل حلزون گوش ، از سوی دیگر از شبکه جریان 2563 نقطهای استفاده میکند با مواد مدلسازی شده به صورت مجموعهای از پوستههای الاستیک و دیوارههای استخوانی که در مجموع 750000 نقطه دارند . بررسیهای مبسوط حلزون گوش نشان داد که شبکه جریان 2563 نقطهای مناسب بررسی عددی نیست هدف ما ارایه نرم افزار تیتانیوم برای ساخت مدل قلب و مدل حلزون گوش براساس شبکه جریان 5123 نقطهای است .
بقیه مقاله به شرح زیر سازمان بندی میشود . در بخش بعدی با معاملات را معرفی میکنیم . این معاملات اساس روش عددی را شکل میدهند که در بخش 3 توضیح داده شده است . بخش 4 کاربردهای اصلی زمان برنامهنویسی تیتانیوم را نشان میدهد که ماجرای اجرای روش عددی به کار میبریم .
الگوریتم و ساختار دادهای در عملکرد ما در بخش 5 ارایه میشوند . دربخش بعدی ما امکانیذیری محاسبات با موازنه بالا با استفاده از نرم افزار را نشان میدهیم . با بحث اهداف خود برای عملکرد بعدی در نرم افزار تیتانیوم نتیجهگیری میکنیم .
معادلات مرزی
روش فوق براساس فرمول لاگرانگی سیستم مواد غرق در مایع است . جریان به صورت مختصات ؟؟ استاندارد روی R3 توصیف میشود در حالیکه ماده در سیستم مختصات منحنی متفاوت ارایه میشود بگذارید M,L چگالی و ویسکوزیته جریان را نشان دهند و (x,t)v و (p(x,t سرعت و فشار را معادله نویز – استوک جریان ویسکوز به شرح زیر است : (1) (2)
که f چگالی نیروی بدن روی جریان است .برای مثال اگر ماده به صورت پوسته نازک مدل سازی شده ، f بردار سان است که همه جا صفر است به جز روی سطح نشاندهنده پوسته روش عددی از ارایه معادلات ( 1) و (2) روی شبکه تباوبی استفاده میکند .