فهرست:
فصل اول:
سرطان پستان[S. R.1]
مقدمه.......................................................................................................................................................................... 12
1-1 سرطان پستان.................................................................................................................................................. 14
1-2 ماموگرافی و غربالگری سرطان پستان ................................................................................................. 14
1-2-1 ماموگرافی غیرنرمال.......................................................................................................................... 15
1-3 ماموگرافی دیجیتال....................................................................................................................................... 17
1-3-1 بدست آوردن تصویر............................................................................................................................ 17
1-3-2 ذخیره سازی تصویر............................................................................................................................. 18
1-3-3 نمایش تصویر.......................................................................................................................................... 18
1-4 تشخیص با روشهای کامپیوتری............................................................................................................... 18
1-4-1 تکنیکهای چندگانه CAD............................................................................................................ 19
1-5 تراکم پستان.................................................................................................................................................... 19
1-6 روشهای تصویربرداری.................................................................................................................................... 20 1-6-1 ماموگرافی دیجیتال........................................................................................................................................................................ 20
1-6-2 اولتراسوند................................................................................................................................................ 20
فصل دوم:
مروری بر تکنیکهای جداسازی اتوماتیک توده
2-1 مقدمه................................................................................................................................................................. 23
2-2 جداسازی نمایه های پستان .......................................................................................................................... 23
2-3 مروری بر تکنیکهای جداسازی..................................................................................................................... 25
2-3-1 روشهای مبتنی بر رشد ناحیه.......................................................................................................... 25
2-3-2 خوشه بندی فازی c-means............................................................................................................ 25
2-3-3 تبدیل ویولت گسسته دو بعدی(DWT)...................................................................................... 27
2-3-4 الگوریتم آب پخشان(Watersheds):........................................................................................... 28
2-3-5 الگوریتم LBG..................................................................................................................................... 28
2-3-6 منطق فازی.............................................................................................................................................. 29
2-3-7 میدان تصادفی مارکوف...................................................................................................................... 29
2-3-8 ماتریس هم رخداد................................................................................................................................. 31
2-3-9 عملگرهای مورفولویکال.................................................................................................................... 31
2-3-10 کلاس بندی SVM.............................................................................................................................. 32
فصل سوم:
مروری بر نحوه انتخاب مقالات.........................................................................................................36
مرور مقالات
3-1 تشخیص توده سرطان پستان درتصاویر ماموگرافی با استفاده از عملگرهای مورفولوژیکال و خوشه بندی فازی c – میانگین.......................................................................................................................37
3-2 تشخیص تومور درتصاویر ماموگرافی با استفاده از تکنیک تدریج بردار......................................39
3-3 افزایش تصاویر ماموگرافی و حذف نویز برای تشخیص سرطان پستان با استفاده از پردازش تبدیل ویولت دو بعدی 42
3-4 نظریه جدید برای تشخیص میکرئکلسیفیکیشن [S. R.2] ها با استفاده از تکنیک منطق فازی.....................44
3-5 تشخیص اتوماتیک سرطان پستان درتصاویر ماموگرافی با روش ماشین بردار پشتیبان.................46
3-6 تشخیص کامپیوتری بر اساس پردازش تصاویر پزشکی و روشهای هوش مصنوعی....................48
3-7 الگوریتم هوش مصنوعی برای تشخیص تومور در تصاویر ماموگرافی.......................................50
3-8 سیستم های تشخیص کامپیوتری برای ماموگرافی دیجیتال بر اساس فازی-عصبی و تکنیک های استخراج ویژگی...................................................................................................................................52
3-9 استفاده از میدان تصادفی مارکوف برای تشخیص تومور در تصاویر دیجیتال ماموگرافی.............54
3-10 تشخیص زود هنگام سرطان پستان با استفاده از تکنیک SVM................................................56
3-11 جداسازی اتوماتیک توده در تصاویر ماموگرافی(پایان نامه)......................................................58
فصل چهارم:
نتیجه گیری و پیشنهادات............................................................................................................................. 60
پیوست 1:
تاریخچه و ظهور ماموگرافی............................................................................................................................... 63
پیوست 2:
دستگاه ماموگرافی................................................................................................................................................. 70
مراجع............................................................................................................................................................................ 75
[S. R.1]در یک خط آورده شود. این تذکرنیز تکراری است
[S. R.2]میکروکلسیفیکیشن [S. R.2]
منبع:
Basha, DR.K.Satya Prasad "AUTOMATIC DETECTION OF BREAST CANCER MASS IN MAMMOGRAMS USING MORPHO LOGICAL OPERATORS AND FUZZY C –MEANS CLUSTERING", Theoretical and Applied Information Technology, 2009
[2] H.B.Kekre,"Tumor Detection in Mammography Images using Vector Quantization Technique" ,Intelligent Information Technology Application, 2009, 2(5):237-242
[3] Arianna Mencattini, Marcello Salmeri," Mammographic Images Enhancement and Denoising for Breast Cancer Detection Using Dyadic Wavelet Processing",IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 7, JULY 2008
[4] Heng-Da Cheng, Yui Man Lui"A Novel Approach to Microcalcification Detection Using Fuzzy Logic Technique",IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 3, JUNE 1998
[5] Defeng Wang , LinShi , PhengAnnHeng," Automatic detection of breast cancers in mammograms using structured support vector machines",Neurocomputing 72 (2009) 3296–3302
[6] John Stoitsis,Ioannis Valavanis, Stavroula G. Mougiakakoua, Spyretta Golemati," Computer aided diagnosis based on medical image processing and artificial intelligence methods",Nuclear Instruments and Methods in Physics Research A 569 (2006) 591–595
[7] Lei Zheng and Andrew K. Chan," An Artificial Intelligent Algorithm for Tumor Detection in Screening Mammogram",IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 7, JULY 2001
[8] Brijesh Verma and John Zakos," A Computer-Aided Diagnosis System for Digital Mammograms Based on Fuzzy-Neural and Feature Extraction Techniques",IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 5, NO. 1, MARCH 2001
[9] Li, H.D.; Kallergi, M.; Clarke, L.P.; Jain, V.K.; Clark, R.A.; , "Markov random field for tumor detection in digital mammography," Medical Imaging, IEEE Transactions on , vol.14, no.3, pp.565-576, Sep 1995
[10] Y.Ireaneus Anna Rejani, S.Thamarai Selvi," EARLY DETECTION OF BREAST CANCER USING SVM CLASSIFIER TECHNIQUE",Computer Science and Engineering Vol.1(3), 2009, 127-130
[11] DIGTAL IMAGE PROCESSING - Rafael C. Gonzalez - Richard E. Woods ADDISON-WESLEY An imprint of Pearson Education, 1st Edition
[12] H.P.Chan, N.Petrick, and B.Sahiner,“Computer-aided breast cancer diagnosis,” Artificial intelligence techniques in breast cancer diagnosis and prognosis, Series in machine perception and artificial intelligence,Vol.39, World Scientific Publishing Co.Pte.Ltd,2000, pp.179-264.
[13] Arnau oliver I malagelada,"Automatic Mass Segmentation in Mammographic Images",PHD Thesis,Girona,2007
[14] X.Y.Wang & J.M.Garibaldi, “ A Comparison of fuzzy & non- fuzzy clusterings techniques in cancer diagnosis”.
[15] A.Baraldi, and P.Blonda, “A Survey of Fuzzy Clustering Algorithms for Pattern Recognition-PartI and II”,IEEE RANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 29,NO. 6, 1999
[16] S.Saheb Baha and Dr. K.Satya Prasad, “Automatic detection of Hard Exudates in Diabetic Retinopathy using Morphological Segmentation and Fuzzy Logic” in IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008- P- 211 – 218
[17] D.M.Garge and V.N. Bapat," A low cost wavelet based mammogram image processing for early detection of breast cancer",Science and Technology, Vol.2 No. 9 (Sep 2009)
[18] Pelin GORGEL,Ahmet SERTBAS, Niyazi KILIC," MAMMOGRAPHIC MASS CLASSIFICATION USING WAVELET BASED SUPPORT VECTOR MACHINE",ELECTRICAL & ELECTRONICS ENGINEERING, VOL.9,No.1, pp(867-875) ,2009
[19] Leonardo de Oliveira Martins, Geraldo Braz Junior, Arist´ofanes Correa Silva," Detection of Masses in Digital Mammograms using K-means and Support Vector Machine",Electronic Letters on Computer Vision and Image Analysis 8(2):39-50, 2009
[20] A Mohd. Khuzi, R Besar, WMD Wan Zaki," Identification of masses in digital mammogram using gray level co-occurrence matrices",Biomedical Imaging and Intervention , Received 1 April 2009; received in revised form 24 May 2009, accepted 3 June 2009
[21] Cigdem Demir and B¨ulent Yener," Automated cancer diagnosis based on histopathological images: a systematic survey",TECHNICAL REPORT, RENSSELAER POLYTECHNIC INSTITUTE, DEPARTMENT OF COMPUTER SCIENCE, TR-05-09.
[22] Norman F. Boyd," Mammographic Density and the Risk and Detection of Breast Cancer",N Engl J Med 2007;356:227-36.
[23] Kenya Murase, Nobuyoshi Tanki, Masahiro Iinuma," A new parameter enhancing breast cancer detection in computer aided diagnosis of X-ray mammograms",MEDINFO 2004
[24] Christine Laronga," Proteomic Approach to Breast Cancer",Cancer Control, October 2007, Vol. 14, No. 4
[25] Daniel B. Kopans," Early Breast Cancer Detection Using Techniques Other Than Mammography " ,American Roentgen Ray Society, AJR 143:465-468, September 1984
[26] J.Subhash Chandra bose, Marcus Karnan," Detection of Masses in Digital Mammograms",Computer and Network Security,Vol. 2, No. 2, February 2010
[27] Kostas Marias, Christian Behrenbruch," A Registration Framework for the Comparison of Mammogram Sequences",IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 6, JUNE 2005
[28] Changizi V, Giti M, Arab Kheradmand ," Application of computed aided detection in breast masses diagnosis",Indian Journal of Cancer , October–December 2008 ,Volume 45 , Issue 4
[29] Wael A. Mohamed, Yasser M. Kadah ," Computer Aided Diagnosis of Digital Mammograms", IEEE ,2007
[30] S. Prabakaran R. Sahu S. Verma," A Clustering and Selection Method using Wavelet Power Spectrum",Computer Science, 2006
[31] H.S. Sheshadri & A. Kandaswamy," Computer aided decision system for early detection of breast cancer",Indian J Med Res 124, August 2006, pp 149-154
[32] Javier Roca-Pardi," Assessing continuous bivariate effects among different groups through nonparametric regression models: An application to breast cancer detection",Computational Statistics & Data Analysis 52 (2008) 1958 – 1970
[33] KANGMIN ZHU, JOANNE CAULFIELD," Body Mass Index and Breast Cancer Risk in African American Women",Elsevier Inc,AEP Vol. 15, No. 2,February 2005: 123–128
[34] N KARSSEMEIJER, J D M OTTEN,H RIJKEN," Computer aided detection of masses in mammograms as decision Support",Radiology, 79 (2006), S123–S126
[35] K.Thangavel, M.Karnan, R.Sivakumar, A. Kaja Mohideenm" Automatic Detection of Microcalcification in Mammograms– A Review", Computer Science and Engineering
[36] Viet Dzung Nguyen, Duc Thuan Nguyen," A Program For Locating Possible Breast Masses On Mammograms",International Conference on the Development of BME in Vietnam, 11-14th Jan 2010
[37] Serhat Ozekes, Onur Osman," Mammographic Mass Detection Using a Mass Template",Korean J Radiol 6(4), December 2005