محققین دانشگاه لندن در انگلستان و دانشگاه Paris Sud در فرانسه ، شبیهسازیهایی بر اساس مکانیک کوانتوم برای مطالعه و کامپوزیتهای خاک رس–پلیمر بکار بردهاند. امروزه این ترکیبات یکی از موفقترین مواد نانوتکنولوژی هستند، زیرا بطور همزمان مقاومت بالا و شکلپذیری از خود نشان میدهند؛ خواصی که معمولاً در یکجا جمع نمیشوند. نانو کامپوزیتهای پلیمر–خاک رس میتوانند با پلیمریزاسیون در جا تهیه شوند؛ فرآیندی که شامل مخلوط کردن مکانیکی خاک معدنی با مونومر مورد نیاز است. بنابراین مونومر در لایه درونی جایگذاری میشود (خودش را در لایههای درون ورقههای سفال جای میدهد) و تورق کل ساختار را افزایش میدهد. پلیمریزاسیون ادامه مییابد تا سبب پیدایش مواد پلیمری خطی و همبسته گردد. دانشمندان با بکارگیری Castep (یک برنامه مکانیک کوانتوم که نظریه کارکردی چگالی را بکار میگیرد) تحول کشف شده در این روش را که پلیمریزاسیون میان گذار خود کاتالیست نامیده میشود مطالعه کردند. این پروژه ، دانشی نظری در زمینه ساز و کار این فرآیند جدید را بوسیله مشخص کردن نقش سفال در کامپوزیت فراهم نمود. ضروری است که دانش حاصل از شبیهسازیها ، جهت کنترل و مهندسی نمودن فعل و انفعالات پلیمر-سیلیکات به کمک دانشمندان آید.
دانشمندان در شرکت BASF شبیه سازیهای مقیاس میانی را برای بررسی علم و رفتار ریزوارهها بکاربردند. ریزوارهها ذراتی کروی شکل با ابعاد نانو هستند که به صورت خود به خود در محلولهای کوپلیمری ایجاد میشوند و در زمینههایی مانند سنسورها وسایل آرایشی و دارو رسانی کاربرد دارند. دانشمندانBASF با بکار گیری esoDyn ، یک ابزار شبیه سازی برای پیشبینی ساختارهای مقیاس میانی مواد متراکم محلولهای تغلیظ شده کوپلیمرهای آمفیفیلیک را بررسی کردند.
شبیهسازیها مشخص نمود که کدام شرایط مولکولی و فرمولی به شکلگیری "ریزوارههای معکوس" مانند نانو ذرات آب در یک محیط فعال منتهی میشود. چنین نتایجی برای درک رفتار عوامل فعال سطحی ضروری هستند. به کمک روشهایی مانند پرتاب محلول در آزمایشگاه میتوان به نتایجی در این زمینه دست یافت، اما دستیابی به این نتایج ماهها به طول میانجامد، درحالی که آزمایشهای شبیهسازی شده تنها طی چند روز نتیجه میدهند.
محدودیتهای این روشها چیست؟
در حالیکه امروزه ابزار مدلسازی در سطح کوانتومی و مقیاس میانی به خوبی توسعه یافتهاند، همچنان محدودیتهایی در این عرصه وجود دارد. برای مثال کاربردهایی در زمینه وسایل الکترونیک مستلزم انجام محاسبات مکانیک کوانتوم برای تعداد اتمهایی بیش از روشهای حاضر میباشد که بیش از توان عملیاتی منابع محاسبهگر فعلی است. همچنین مدلسازی کل وسایل امکانپذیر نیست، بویژه عملکردها و خواص آنها.
آینده زیر سایه نانو
تولید نانو تیوب های کربنی (ساختارهای لوله ای کربنی) ماده ای در اختیار بشر قرار داد که رساناتر از مس، مقاوم تر از فولاد و سبک تر از آلومینیوم است. نانو فناوری در تعریفی بسیار ساده ، یعنی تکنولوژی هایی که در ابعاد نانومتری عمل می کنند. نانومتر واحد اندازه گیری است و برابر یک میلیاردم متر یا ۱۰به توان ۹-متر است . اندازه اتم ها و مولکول ها در این محدوده قرار دارد، بنابراین با ورود به این فضای کوچک بشر می تواند در نحوه چینش و آرایش اتم ها و مولکول ها دخالت کند و به ساخت مواد جدید و ساختارهایی متفاوت با آنچه تاکنون وجود داشته است بپردازد. تولید نانو تیوب های کربنی (ساختارهای لوله ای کربنی) ماده ای در اختیار بشر قرار داد که رساناتر از مس، مقاوم تر از فولاد و سبک تر از آلومینیوم است. همچنین با استفاده از نانو ذرات می توان سطوح خود تیزشونده یا همیشه تمیز ساخت و ربایش مغناطیسی را چندین برابر کرد. لاستیک های با عمر بالای ۱۰ سال و دارورسانی به تک سلول های آسیب دیده در بدن از توانایی هایی است که بشر به مدد نانوفناوری به آن دست یافته است. اگر بپذیریم که نانو فناوری توانمندی تولید مواد، ابزارها و سیستم های جدید، با در دست گرفتن کنترل در سطوح اتمی و مولکولی و استفاده از خواص آن سطوح است آنگاه درخواهیم یافت که کاربردهای این فناوری در حوزه های مختلف اعم از غذا، دارو، تشخیص پزشکی، فناوری زیستی ، الکترونیک، کامپیوتر، ارتباطات، حمل و نقل، انرژی ، محیط زیست و امنیت ملی خواهد بود به گونه ای که به زحمت می توان عرصه ای را که از آن تأثیر نپذیرد معرفی کرد. هرچند آزمایش ها و تحقیقات پیرامون نانو تکنولوژی از ابتدای دهه ۸۰ قرن بیستم به طور جدی پیگیری شد، اما اثرات تحول آفرین و باورنکردنی نانوفناوری در روند تحقیق و توسعه باعث گردید که نظر همگی کشورهای بزرگ به این موضوع جلب گردد و فناوری نانو را به عنوان یکی از مهم ترین اولویت های تحقیقاتی خویش طی دهه اول قرن بیست و یکم محسوب کنند. لذا محققان ، اساتید و صنعتگران ایرانی نیز باید در بسیجی همگانی، جایگاه و وضعیت خویش را درباره این موضوع مشخص کنند و با یک برنامه ریزی علمی و کارشناسانه به حضوری فعال و حتی رقابتی دراین جایگاه ابراز وجود کنند. زیرا بسیاری از صاحب نظران ومحققان، نانوفناوری را مساوی آینده دانسته اند به عبارت دیگر می توان گفت، اولویت کشور، هر صنعت و فناوری که باشد بدون تسلط بر ابعادنانو، در دنیای جدید نمی توان در آن صنعت و فناوری حرفی در دنیا زد. ماهیت فرارشته ای علوم و فناوری نانو به عنوان توانمندی تولیدمواد، ابزارها و سیستم های جدید با دقت اتم و مولکول، موجب کاربردهای بسیار زیادی در عرصه های مختلف علمی و صنعتی شده است. برای مثال در بخش پزشکی و بهداشت از زمینه های کاری بسیار مهم نانوفناوری، سیستم توزیع دارو درداخل بدن است . مصرف دارو در حال حاضر به صورت حجمی است در حالی که سلول های خاصی از بدن نیازمند آن هستند ، در روش جدید دارو با وسایل تزریق متفاوت با امروزه، به صورت مستقیم به سمت سلول های مشخص جهت گیری شد و دارو به محل نیاز تحویل داده می شود. از نظر دفاعی نیز این فناوری برای کشورها هم فرصت و هم تهدید است. به لحاظ کاربردهای زیاد این فناوری گرایش زیادی در بخش دفاعی کشورها به تحقیق و توسعه صورت گرفته است. این کاربردها از لباس های مانع خطر تا پرنده های بسیار کوچک تجهیزات اطلاعاتی و بسیاری موارد دیگر است که هم اکنون با حمایت وزارتخانه های دفاع کشورهایی چون آمریکا ، ژاپن و برخی کشورهای اروپایی به صورت طرح های تحقیقاتی در حال انجام هستند. نانوفناوری، تغییر بنیانی مسیری است که در آینده موجب ساخت مواد جدیدخواهد شد و انقلابی در مواد ایجادخواهد کرد که محققان قادر به ساخت موادی خواهند شد که در طبیعت نبوده و شیمی مرسوم نیز قادر به ایجادشان نیست. برخی از مزایای مواد نانوساختار، عبارت است از مواد سبک تر، قوی تر، قابل برنامه ریزی، کاهش هزینه عمر کاری از طریق کاهش دفعات نقص فنی ابزارهایی نوین برپایه اصول و معماری جدید، صنعت خودرو و لوازم خانگی بااستفاده از این فناوری جدید در درازمدت می توان تومورهای مغزی را به درستی تشخیص داد و نیز بدون آسیب زدن به بافت های سالم و با استفاده از پرتو درمانی این بیماری را بهبود بخشید، نانو کپسول های تولیدی با استفاده از فناوری نانو، دارای موادی مانند ویتامین A، رتینول و بتاکاروتن خواهد بود که باید به لایه های عمقی پوست منتقل شوند تا بیشترین خواص ضدپیری و سایر خواص دارویی خود را بروز دهند. با کارگذاری نانو ذرات فعال نوری در داخل گلبول های سفید خون موفق به شناسایی سلول های آسیب دیده خواهیم شد. در زمینه انرژی می تواند به طور قابل ملاحظه ای کارآیی ، ذخیره سازی و تولید انرژی را تحت تأثیر قرار داده و مصرف انرژی را پایین بیاورد. به عنوان مثال شرکت های موادشیمیایی، موادپلیمری تقویت شده را ساخته اند که می تواند جایگزین اجزای فلزی بدنه اتومبیل ها شود. استفاده گسترده از این نانوکامپوزیت ها می تواند سالیانه ۱/۵ میلیاردلیتر صرفه جویی مصرف بنزین به همراه داشته باشد.
طرح "تولید انبوه نانو لوله های کربنی" در پژوهشگاه صنعت نفت، گامی دیگر برای پیشتازی در فناوری های روزآمد
"نانو لوله های کربنی" ساختار جدیدی از کربن است که از سال 1990 در جهان شناخته شده است. این ماده به سبب برخورداری از خواص فیزیکی، شیمیایی و مکانیکی و ساختار خاص، کاربردهای بسیاری در صنعت دارد. هم اکنون "طرح تولید انبوه نانو لوله های کربنی" در پژوهشکده گاز پژوهشگاه صنعت نفت، مراحل آزمایشگاهی را پشت سر گذاشته و تولید آن در مقیاس پایلوت به میزان 8 کیلوگرم در روز با موفقیت به انجام رسیده است. پژوهشگاه صنعت نفت در نظر دارد تا تولید پیوسته نانو لوله های کربنی را با راه اندازی واحدی نیمه صنعتی با ظرفیت 20 کیلوگرم در مهر ماه امسال آغاز کند. آنچه در پی می آید، گفت و گوی خبرنگار شانا با دکتر علیمراد رشیدی، مسئول طرح تولید انبوه نانو لوله های کربنی است. وی در این گفت و گو به تشریح موارد استفاده از نانو لوله های کربنی و به ویژه کاربردهای آن در صنعت نفت پرداخته است.
طرح تولید انبوه نانو لوله های کربنی با چه هدفی در پژوهشگاه تعریف شده و کاربرد این نانو لوله ها چیست؟ تولید نانو لوله های کربن (کربن نانو تیوپ) که در صنایع مختلف و از جمله در صنعت نفت موارد استفاده بسیار دارد، از جمله طرح هایی است که مراکز پژوهشی پیشرو در جهان، در سال های اخیر آن را دنبال کرده اند. در واقع می توان گفت این یک فناوری نو در جهان است که بسیاری از کاربردهای آن هنوز در مرحله آزمایش و بررسی است. خوشبختانه پژوهشگاه هم در بسیاری از این کاربردها به ویژه در کاربردهای نفتی این مواد پیشتاز است. چه نوع کاربردهایی از این مواد بیشتر مد نظر پژوهشگاه قرار دارد؟ یکی از کاربردهای کربن نانو تیوپ که در این طرح بیشتر مد نظر ما بوده، بحث استفاده از آن به عنوان پایه نانو کاتالیست در فرآیندهای شیمیایی و جذب و ذخیره سازی گاز طبیعی و هیدروژن است. در حال حاضر برای ذخیره سازی گاز طبیعی، برای مثال استفاده از آن به عنوان سوخت در خودروها از فناوری CNG Compressed Natural Gas استفاده می شود. در این روش گاز در فشار بالا به میزان زیادی فشرده و در دمای پایین ذخیره سازی می شود تا بتوان از آن در خودروها استفاده کرد. اما فناوری جدیدی به نام Adsorb Natural Gas CNG شناخته و معرفی شده است که می توان آن را جانشین CNG کرد، زیرا در ذخیره سازی به روش ANG از فشار 30 بار استفاده می شود که درقیاس با CNG که به فشاری برابر 100 تا 150 بار نیاز است، فشار به مراتب پایین تری است. روش کار نیز به این صورت است که گاز ابتدا به سطح جاذب، مثلا لوله های نانو کربنی آورده می شود، سپس روی سطح جامد این کربن ها که تخلخل آنها بسیار بسیار زیاد است، می نشیند و جذب و ذخیره می شود. سپس با انداختن فشار، گاز ذخیره شده را می توان مصرف کرد. مزیت های این فناوری نسبت به روش CNG چیست؟ زمانی که از روش ANG استفاده می شود، دیگر به باک های تحت فشار، سنگین و پر حجم نیاز نیست. به علاوه با استفاده از این تکنیک می توان باک خودرو را طوری طراحی کرد که دارای ضخامت زیاد نباشد و حتی حالت سیلندری و استوانه ای نداشته باشد. برای مثال آن را در شکل مکعب مستطیل و در هر جای خودرو که مد نظر است قرار داد. در نقاط دیگر دنیا تا چه اندازه روی فناوری ANG کار شده و فاصله ما با آنها چقدر است؟ این فناوری در دنیا ناشناخته نیست و می توان گفت مراحل توسعه خود را می گذراند. کارهایی در نقاط مختلف جهان در این زمینه انجام شده است، اما ما هم نه تنها از این روند عقب نیستیم، بلکه در شمار پیشگامان قرار داریم. برای مثال هدفی که دپارتمان انرژی آمریکا (DOE) برای این فناوری تعیین کرده، 150 حجم به حجم است، یعنی این که بتوان 150 متر مکعب گاز را در یک متر مکعب از این جاذب ها ذخیره کرد. در اسپانیا نیز دانشگاه "الیکنته" (Alicante) در این زمینه فعال بوده و پیشرفت هایی داشته است. اما پژوهشگاه صنعت نفت با کار روی کربن فعالی که از پوست گردو به دست می آید، تا کنون به نتیجه 130 حجم به حجم رسیده است. به عبارتی می توانیم بگوییم به هدف دپارتمان انرژی آمریکا بسیار نزدیک هستیم. گام بعدی این است که این کار را با جاذب های نانو ساختار انجام دهیم