بررسی توزیع ولتاژ و شار حرارتی در قرصهای Zno در برق گیر های فشار قوی با کمک روش عناصر محدود :
هر تجهیز در سیستم فشار قوی برای ولتاژ معینی ساخته میشود ولی درطول کار، اضافه ولتاژهایی پیش میآیند که ممکن است برای دستگاه خطرناک باشند. به منظور جلوگیری از خطر اضافه ولتاژها باید از طرفی مقدار اضافه ولتاژ را تا حد ممکن پایین آورد و از طرف دیگر استقامت عایقی تجهیز را بیشتر از سطح اضافه ولتاژهایی که ممکن است حادث شوند، انتخاب کرد. اضافه ولتاژها را نمیتوان به طور کلی حذف کرد بنابراین برای جلوگیری از آسیبدیدن تجهیزات شبکه، باید تا حد امکان آنها را محدود کرد. برقگیرهای اکسید روی یکی از رایجترین تجهیزاتی هستند که بدین منظور به ویژه برای محافظت از ترانسهای گران قیمت فشار قوی مورد استفاده قرار میگیرند. برقگیرها باعث میشوند که دامنه اضافه ولتاژهای اعمال شده به تجهیز فشار قوی کاهش یافته و در نتیجه امکان سوختن آن کمتر شود. توزیع میدان الکتریکی دردستگاههای فشار قوی و ایزولاتورها علاوه بر خواص الکتریکی المان ها و نوع ماده عایقی به کار رفته در آنها، به شکل و محل قرار گرفتن الکترودهای فلزی نیز بستگی دارد. بنابراین به سبب بکارگیری قسمتهای متعدد فلزی در آنها و ایجاد خازنهای پراکندگی، دارای توزیع غیر یکنواخت ولتاژ هستند، اندازهگیری ولتاژ و جریان در ترمینالهای برقگیر، روش مناسبی برای نشان دادن تاثیر شکل و محل قرار گرفتن الکترودهای شناور بر نحوه توزیع میدان نخواهد بود. روشهای تست عملی برای اندازهگیری ولتاژ و جریان درنقاط مختلف برقگیر نیز طبق معمول وقتگیر و پرهزینه هستند. بنابراین بهتر است به دنبال جایگزین عملی مناسب بدین منظور باشیم. برقگیر اکسید روی فاقد فاصله هوایی است و همواره تحت تنش ولتاژ قرار دارد. در نتیجه جریان نشتی کوچکی در رنج چند میکروآمپر از آن میگذرد. در حالت کار عادی سیستم (ولتاژهای نزدیک به ولتاژ نامی شبکه)، مؤلفه خازنی جریان نشتی در برقگیر اکسید روی مولفه غالب است به طوریکه میتواند حتی به 40 برابر مولفه مقاومتی نیز برسد. بنابراین در این شرایط اگر سطح خارجی برقگیر را عاری از آلودگی فرض کنیم، میتوان شبکه خازنی معادلی را برای برقگیر ارایه داد. در اینجا روشی برای تعیین شبکه خازنی معادل برقگیر ارایه شده است که هم برای برقگیر سالم و هم برای برقگیر آسیبدیده کاربرد دارد در اینجا به کمک روش عناصر محدود، نخست مقادیر عددی میدان درنقاط مختلف سیستم مورد نظر محاسبه شده است. سپس مقادیر به دست آمده برای میدان جهت محاسبه بارهای القایی در الکترودها به کار گرفته میشوند. در نهایت با داشتن بار کلی القا شده و همچنین مقدار ولتاژ در هر الکترود، ظرفیتهای خازنی مختلف در برقگیر محاسبه میشوند. توزیع ولتاژ در برقگیر به گونهای است که قسمتهای بالایی که به الکترود فشار قوی نزدیکترند، تحت تنش ولتاژ بالاتر قرار دارند و بالطبع باید تنشهای حرارتی بیشتری را نیز تحمل کنند. بنابراین باید تا حد امکان توزیع ولتاژ را یکنواخت کرد. بعضی تغییرات در شکل هندسی اجزای برقگیر میتواند به مانند خواص الکتریکی اجزای تشکیل دهنده آن، در توزیع ولتاژ تاثیرگذار باشد. لذا عواملی مانند شکستگی سپرها و تاثیر Grading Ring و … مورد بررسی قرار گرفتهاند. کلیه شبیهسازیها به روش عناصر محدود به کمک نرمافزار
Pc-Opera 8.7 در فضای سهبعدی انجام شدهاند.
از نقطهنظر حرارتی نیز افزایش حرارت ناشی از جذب انرژی صاعقه یا اضافه ولتاژ در المان اکسید روی میتواند باعث ناپایداری حرارتی یا ایجاد Hot Spot در نقاطی از برقگیر شود. با بررسی توزیع حرارت در برقگیر نقاطی که تحت تنش حرارتی بیشتری قرار گرفته و باید در طراحی به آنها توجه کرد مشخص شده است. بررسی توزیع حرارت در برقگیر نیز به روش عناصر محدود و به کمک نرمافزار Pc-Opera 8.7 که قابلیت کوپل کردن میدانهای الکتریکی و حرارتی را داراست، در فضای دو بعدی انجام گرفته است.
بررسی و امکانسنجی انتقال تکنولوژی ساخت توربینهای بادی جهت نیروگاههای بادی :
یکی از مسائلی که بشر در سالهای پایانی قرن بیستم به طور گستردهای به آن پرداخت، معضلات تولید انرژی با سوختهای فسیلی و محاسن فراوان انرژیهای پاک بوده است. این نوع از انرژیها را انرژیهای تجدیدپذیر نیز میگویند. عمدهترین این انرژیها: خورشیدی، آبی، زمینگرمایی و بادی است. از میان این انواع، انرژی باد به خاطر نیاز به سرمایهگذاری کمتر و بازدهی بیشتر، همچنین تکنولوژی سادهتر به سرعت مورد اقبال واقع شده و بهرهبرداری از آن به طور گستردهای در کشورهای پیشرفته آغاز شد.
کشور ما به خاطر بادخیز بودن دارای انرژی بالقوهای حداقل معادل 6500 مگاوات است. این رقم در مقایسه با کل تولید 25000 مگاوات انرژی برق در کشور قابل ملاحظه است.
در حال حاضر تنها 10 مگاوات از این انرژی بالقوه و تمیز در حال استحصال در کشور است. (در مقایسه با 12000 مگاوات توربین نصب شده در کشور آلمان)
در این پروژه ضمن بیان مشروح مزایای انرژی باد، با معرفی بهینهترین نوع توربین بادی قابل استفاده در کشور، امکانسنجی ساخت این نوع توربین از دو جنبه 1) توجیه و صرفه اقتصادی و 2) امکان تکنولوژیکی ساخت در داخل را مورد بررسی کامل قرار خواهیم داد.
شبیهسازی جامع شبکه های برق :
آنالیز جامع در بهبود کیفیت توسعه و بهرهبرداری از شبکه های برق و ارضای توام شاخصههای مطلوب تولید و مصرف، از نقش غیرقابل انکاری برخوردار است. با این حال ابعاد و پیچیدگی شبکههای به هم پیوسته امروزی و همینطور آتی تحقق این امر را با چالشهایی مواجه میسازد که دیگر راهکارهای آنالیز متمرکز معمول را یارای پاسخگویی به آنها نیست. نیاز به توان محاسباتی قابل ملاحظه، محدودیتهای کنترل بلادرنگ،محدودیت در سطوح دسترسی به اطلاعات نواحی شبکه و … برخی از موانع موجود در مسیر تحقق آنالیز جامع شبکههای برق توسط راهکارهای آنالیز متمرکز هستند. در رساله حاضر با هدف مرتفع کردن نقصانهای یاد شده و در قالب طرح تحقیقاتی – کاربردی شبیهسازی جامع شبکههای برق، امکان بررسی همه جانبه شبکههای برق به کمک شبیه سازی توزیع شده آنها در بستر شبکههای یارانهای، فراهم شده است. بر این اساس و متاثر ازایده حل تکهای شبکههای بزرگ مقیاس یا Diakoptics و یاری گرفتن از شیوه آنالیز
حساسیت بزرگ مقدار
(Large Change Sensitivity Analysis) متدی ریاضی برای حل تکهای معادلات پخش بار و خطا به عنوان اساسیترین محاسبات مورد نیاز در شبکههای برق، توسعه داده شده که با دقتی قابل توجه نتایج یکسانی را با حالت حل شبکه یکپارچه و تجزیه نشده ارایه میدهد. نتایج حاصل از شبیه سازی توزیع شده شبکههای برق توسط نرمافزار پاشا بر روی شبکههایی به بزرگی 3000 باس بار (بزرگترین شبکه قابل دسترسی برای مولف) در ابعاد و اجزای مختلف بر روی شبکه رایانهای دانشکده برق، همگی حکایت از صحت، سقم و قابلیت اطمینان نتایج راهکار ارایه شده دارند.
مدیریت سیستم انتقال با قیمتگذاری ATC :
بهرهوری پایین سیستم قدرت سنتی در تامین انرژی الکتریکی باعث شد تا همانند صنایع هوایی و مخابرات از راه دور تجدید ساختار در صنعتبرق مطرح شود. رقابت و دسترسی آزاد به سیستم انتقال دو موضوع اساسی در تجدید ساختار صنعتبرق است. خصوصیسازی و تغییر ساختارهای موجود در جهت ایجاد رقابت بیشتر و دسترسی آزاد و بدون تبعیض تولیدکنندگان مختلف به سیستم انتقال است.
برای آن که سیستم قدرت به اهداف مورد نظر برسد، اجزای مختلف آن از همدیگر تفکیک میشود و نهاد جدیدی به نام ISO به وجود میآید تا رقابت و دسترسی آزاد کاربران به سیستم انتقال و ایمنی سیستم انتقال در حضور اعضای مختلف بازار تضمین شود. ISO مسوولیت مختلفی از قبیل بهرهبرداری از سیستم قدرت، مدیریت بازار انرژی، پیشبینی و تامین تجهیزات سیستم انتقال و تجهیزات جانبی را بر عهده دارد. یکی از اطلاعات مهمی که ISO باید آن را محاسبه و از طریق یک شبکه الکترونیکی متصل به اینترنت در اختیار عموم قراردهد، قابلیت انتقال در دسترس یا به اختصار ATC است. ATC نشان میدهد که برای یک معادله انتقال از یک سری تولیدکنندگان به یک سری مصرفکنندگان چقدر میتوان انتقال توان را افزایش داد، بدون این که ایمنی سیستم نقض شود. با استفاده از روشهای قیمتگذاری میتوان از ATC برای مدیریت سیستم انتقال استفاده کرد. اگر توان انتقالی یک معادله انتقال نزدیک به ATC باشد، برخی از خطوط سیستم انتقال به محدودیت نامی خود میرسند و لازم می شود که خطوط جدیدی احداث کنیم. در این وضعیت باید پول بیشتری از کاربران انتقال گرفت تا هزینه احداث خطوط جدید یا ارتقای سیستم انتقال تامین شود. در این پایاننامه ابتدا تجدید ساختار سیستم قدرت وسپس روشهای قیمتگذاری انتقال مطرح میشود. همچنین روشهای مختلف محاسبه ATC اعم از روشهای غیرخطی و استفاده از آنالیز حساسیت بحث میشود. در پایان روشی برای مدیریت سیستم انتقال با استفاده از قیمتگذاری ATC ارایه میشود. ویژگی اساسی این روش استفاده از اطلاعات ATC سیستم در مدیریت انتقال است که در مقالات کمتر به آن پرداخته شده است و روش پیشنهادی یک طرح نوین در این زمینه است. روش ارایه شده بر روی سیستم استاندارد 14 با سه IEEE پیاده شده و نحوه استفاده و مزایای آن توضیح داده میشود.