دانلود تحقیق مراحل تقطیر

Word 70 KB 4884 15
مشخص نشده مشخص نشده فیزیک - نجوم
قیمت قدیم:۱۲,۰۰۰ تومان
قیمت: ۷,۶۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • دید کلی شیمی تجزیه نقش حیاتی را در توسعه علوم مختلف به عهده دارد، لذا ابداع فنون جدید تجزیه و بسط و تکامل روشهای تجزیه شیمیایی موجود ، آنقدر سریع و گسترده است که اندکی درنگ در تعقیب رویدادهای تازه سبب بوجود آمدن فاصله‌های بسیار زیاد علمی خواهد شد.

    نقش این فنون در فعالیتهای تولیدی روز به روز گسترده‌تر و پردامنه‌تر می‌گردد.

    امروزه ، کنترل کیفیت محصولات صنعتی و غیر صنعتی ، جایگاه ویژه‌ای دارد که اساس این کنترل کیفیت را تجزیه‌های شیمیایی انجام شده به کمک روشهای مختلف تجزیه‌ای تشکیل می‌دهد.

    سیر تحولی و رشد اصولا توسعه و تغییر پایدار در فنون و روشهای تجزیه وجود دارد.

    طراحی دستگاه بهتر و فهم کامل مکانیسم فرآیندهای تجزیه‌ای ، موجب بهبود پایدار حساسیت ، دقت و صحت روشهای تجزیه‌ای می‌شوند.

    چنین تغییراتی به انجام تجزیه‌های اقتصادی‌تر کمک می‌کند که غالبا به حذف مراحل جداسازی وقت گیر ، منجر می‌شوند.

    باید توجه داشت که اگر چه روشهای جدید تیتراسیون مانند کریوسکوپی ، Pressuremetriz ، روشهای اکسیداسیون _ احیایی و استفاده از الکترود حساس فلوئورید ابداع شده‌اند، هنوز از روشهای تجزیه وزنی و تجزیه جسمی (راسب کردن ، تیتراسیون و استخراج بوسیله حلال) برای آزمایشهای عادی استفاده می‌شود.

    به هر حال در چند دهه اخیر ، تکنیکهای سریعتر و دقیق‌ترِی بوجود آمده‌اند.

    در میان این روشها می‌توان به اسپکتروسکوپی ماده قرمز ، ماورای بنفش و اشعه X اشاره کرد که از آنها برای تشخیص و تعیین مقدار یک عنصر فلزی با استفاده از خطوط طیفی جذبی یا نشری استفاده می‌گردد.

    سایر روشها عبارتند از: کالریمتری (رنگ سنجی) که به توسط آن یک ماده در محلول بوسیله شدت رنگ آن تعیین می‌شود.

    انواع کروماتوگرافی که به توسط آنها اجزای یک مخلوط گازی بوسیله آن از درون ستونی از مواد متخلل یا از روی لایه‌های نازکجامدات پودری تعیین می‌گردند.

    تفکیکی محلولها در ستونهای تبادل یونی آنالیز عنصر ردیاب رادیواکتیو.

    ضمنا میکروسکوپی الکترونی و اپتیکی ، اسپکترومتری جرمی ، میکروآنالیز ، طیف‌سنجی رزونانس مغناطیسی هسته‌ای (NMR) و رزونانس چهار قطبی هسته نیز در همین بخش طبقه بندی می‌شوند.

    خودکارسازی روشهای تجزیه‌ای در برخی موارد با استفاده از رباتهای آزمایشگاهی ، اهمیت روزافزونی پیدا کرده است.

    چنین شیوه‌ای ، انجام یکسری تجزیه‌ها را با سرعت ، کارایی و دقت بهتر امکانپذیر می‌سازد.

    میکروکامپیوترها با قابلیت شگفت‌انگیز نگهداری داده‌ها و بسته‌های نرم افزار گرافیکی بطور قابل ملاحظه‌ای موجبات جمع آوری ، نگهداری ، پردازش ، تقوبت و تفسیر داده‌های تجزیه‌ای را فراهم می‌آورند.

    انواع تجزیه وقتی آزمایش به شناسایی یک یا چند چیز جز از یک نمونه (شناسایی مواد) محدود می‌گردد، تجزیه کیفی نامیده می‌شود، در حالی که اگر آزمایش به تعیین مقدار یک گونه خاص موجود در نمونه (تعیین درصد ترکیب در مخلوطها یا اجزای ساختمانی یک ماده خالص) محدود گردد، تجزیه کمی نامیده می‌شود.

    گاهی کسب اطلاعاتی در زمینه آرایش فضایی اتمها در یک مولکول یا ترکیب بلورین ضروری است، یا تاکید حضور یا موقعیت برخی گروههای عامل آلی در یک ترکیب مورد تقاضا است، چنین آزمایشهایی تحت عنوان تجزیه ساختمانی نامیده می‌شوند و ممکن است با جزئیاتی بیش از یک تجزیه ساده مورد توجه قرار گیرند.

    ماهیت روشهای تجزیه‌ای روشهای تجزیه‌ای معمولا به دو دسته کلاسیک و دستگاهی طبقه بندی می‌شوند.

    روشهای کلاسیک شامل روشهای شیمیایی مرطوب ، نظیر وزن سنجی و عیار سنجی است.

    در واقع تفاوت اساسی بین روشهای دو دسته وجود ندارد.

    همه آنها مشتمل بر وابستگی یک اندازه گیری فیزیکی به غلظت آنالیت می‌باشند.

    در حقیقت روشهای تجزیه‌ای محدودی وجود دارند که صرفا دستگاهی‌اند و یا بیشتر آنها متضمن مراحل شیمیایی متعددی قبل از انجام اندازه گیری دستگاهی هستند.

    کاربردهای شیمی تجزیه کنترل کیفیت محصول بیشتر صنایع تولیدی نیازمند به تولید با کیفیت یکنواخت هستند.

    برای کسب اطمینان از برآورده شدن این نیازمندی مواد اولیه و همچنین محصول نهایی تولید ، مورد تجزیه‌های شیمیایی وسیعی قرار می‌گیرند.

    نمایش و کنترل آلوده کننده‌ها فلزات سنگین پسمانده‌های صنعتی و حشره کشهای آلی کلردار ، دو مشکل کاملا شناخته شده مربوط به ایجاد آلودگی هستند.

    به منظور ارزیابی چگونگی توزیع و عیار یک آلوده کننده در محیط ، به یک روش تجزیه‌ای حساس و صحیح نیاز است و در کنترل پسابهای صنعتی ، تجزیه شیمیایی روزمره حائز اهمیت است.

    مطالعات پزشکی و بالینی عیار عناصر و ترکیبات مختلف در مایعات بدن ، شاخصهای مهمی از بی نظمی‌های فیزیولوژیکی می‌باشند.

    محتوی قند بالا در ادرار که نشانه‌ای از یک حالت دیابتی است و وجود سرب در خون ، از شناخته‌ترین مثالها در این زمینه می‌باشد.

    عیارگیری از دیدگاه تجارتی در برخورد با مواد خام نظیر سنگهای معدنی ، ارزش سنگ معدن ، از روی فلز موجود در آن تعیین می‌شود.

    این موضوع ، مواد با عیار بالا را نیز غالبا شامل می‌شود.

    بطوری که حتی تفاوت کم در غلظت می‌تواند از نظر تجاری تاثیر قابل ملاحظه‌ای داشته باشد.

    بنابراین یک روش تجزیه‌ای قابل اعتماد و صحیح از اهمیت اساسی برخوردار است.

    آینده شیمی تجزیه بروز مشکلات تجزیه‌ای در شکلهای جدیدش ادامه دارد.

    میزان تقاضای مربوط به انجام تجزیه در ابعاد وسیع توسط بسترهای دستگاهی بطور مداوم در حال افزایش است.

    کاوشهای فضایی ، نمونه‌های گمانه زنی و مطالعات اعماق دریاها مثالهایی از نیازهای قابل طرح می‌باشند.

    در دیگر زمینه‌ها نظیر مطالعات محیطی و بالینی ، فرم شیمیایی و دقیق یک عنصر در یک نمونه و نه غلظت کلی آن ، اهمیت فزاینده‌ای پیدا کرده است.

    دو مثال کاملا شناخته شده در این زمینه ، میزان سمیت بسیار زیاد ترکیبات آلی جیوه و سرب در مقایسه با ترکیبات مشابه معدنی است.

    رده بندی روشهای تجزیه‌ای رده بندی روشهای تجزیه‌ای معمولاً بر طبق خاصیتی است که در فرآیند اندازه گیری نهایی مشاهده می‌شود.

    در جدول زیر فهرستی از مهم‌ترین این خاصیتها و همچنین نام روشهایی که مبتنی بر این خاصیتها هستند، دیده می‌شود.

    بر این نکته توجه داشته باشیم که تا حدود سال ۱۹۲۰ تقریباً تمام تجزیه‌ها براساس دو خاصیت جرم و حجم قرار داشتند.

    در نتیجه، روشهای وزنی و حجمی به نام روشهای کلاسیک تجزیه‌ای شهرت یافته‌اند.

    بقیه روشها شامل روشهای دستگاهی است.

    علاوه بر تاریخ توسعه این روشها، جنبه‌های معدودی روشهای دستگاهی را از روشهای کلاسیک جدا و متمایز می‌سازند.

    بعضی از تکنیکهای دستگاهی حساستر از تکنیکهای کلاسیک هستند.

    ولی بعضیها حساس‌تر نیستند.

    با ترکیب خاصی از عناصر یا ترکیبات، یک روش دستگاهی ممکن است بیشتر اختصاصی باشد.

    در مواردی دیگر، یک روش حجمی یا وزنی، کمتر در معرض مزاحمت قرار دارد.

    مشکل است که گفته شود که کدامیک از نظر صحت، راحتی و صرف زمان بر دیگری برتری دارد.

    همچنین این مساله درست نیست که روشهای دستگاهی، الزاما دستگاههای گرانتر یا پیچیده‌تری را بکار می‌گیرند و در حقیقت، استفاده از یک ترازوی خودکار نوین در یک تجزیه وزنی شامل دستگاه ظریفتر و پیچیده‌تری در مقایسه با بسیاری از روشهای دیگری است که در جدول زیر ثبت شده‌اند.

    روشهای تجزیه‌ای مبتنی بر اندازه گیری خاصیت خاصیت فیزیکی که اندازه گیری می‌شود.

    وزنی جرم حجمی حجم طیف نورسنجی (اشعه ایکس، ماوراء بنفش، مرئی، IR)؛ رنگ سنجی ؛ طیف بینی اتمی ؛ رزونانس مغناطیسی هسته و رزونانس اسپین الکترون جذب تابش طیف بینی نشری (اشعه ماوراء بنفش، ایکس، مرئی)؛ نور سنجی شعله‌ای؛ فلوئورسانس (اشعه ایکس، فرابنفش و مرئی) ؛ روشهای رادیوشیمیایی نشر تابش کورسنجی، نفلومتری، طیف بینی رامان پراکندن تابش شکست سنجی و تداخل سنجی شکست تابش روشهای پراش اشعه ایکس و الکترون پراش تابش قطبش سنجی، پاشندگی چرخش نوری و دو رنگی نمایی دورانی چرخش تابش پتانسیل سنجی، پتانسیل سنجی با زمان پتانسیل الکتریکی رسانا سنجی رسانایی الکتریکی پلاروگرافی، تیتراسیونهای آمپرسنجی جریان الکتریکی کولن سنجی کمیت الکتریسیته طیف سنجی جرمی نسبت جرم به بار روشهای رسانایی حرارتی و آنتالپی خواص گرمایی روشهای جداسازی در بیشتر موارد، تجزیه یک نمونه از ماده، قبل از اندازه گیری فیزیکی نهایی آن، ابتدا احتیاج به یک یا چند مرحله زیر دارد: نمونه برداری، برای فراهم کردن نمونه‌ای که ترکیب آن، نماینده توده ماده باشد.

    تهیه و انحلال مقدار معینی از نمونه جداسازی گونه مورد اندازه گیری از اجزاء سازنده‌ای که در سنجش نهایی مزاحمت ایجاد می‌کنند.

    این مراحل معمولاً بیشتر از خود اندازه گیری نهایی تولید مزاحمت می‌کنند و خطاهای بزرگ‌تری را باعث می‌شوند.

    روشهای جداسازی به این دلیل مورد احتیاج‌اند که خواص فیزیکی و شیمیایی مناسب برای اندازه گیری غلظت معمولاً بین چندین عنصر یا ترکیب مشترک است.

    در بررسی مواد بسیار نزدیک و مرتبط به هم، مشکل جداسازی بیشترین اهمیت را می‌یابد و لذا نیاز به تکنیکهایی نظیر کروماتوگرافی، تقطیر جزء به جزء، استخراج ناهمسو و یا الکترولیز در پتانسیل کنترل شده دارد.

    انتخاب روش برای یک مسئله تجزیه‌ای جدول مذکور، حاکی از این است که برای شیمیدانی که با یک مسئله تجزیه‌ای روبرو است، غالبا روشهای متعددی وجود دارند که وی می‌تواند یکی از آنها را انتخاب کند.

    مدت زمانی که او باید برای کار تجزیه صرف کند و کیفیت نتایج حاصل، بنحوی حساس، به این انتخاب بستگی دارد.

    شیمیدان برای اخذ تصمیم خود در مورد انتخاب روش، باید پیچیدگی ماده مورد تجزیه، غلظت گونه مورد نظر، تعداد نمونه‌هایی که باید تجزیه شوند و دقت مورد نیاز را در نظر گیرد.

    پس از این، انتخاب وی به دانش او در مورد اصول اساسی که زیر بنای هر یک از این روشهای قابل دسترسی است و در نتیجه قدرت و محدودیت این روشها بستگی خواهد داشت.

    دستگاهوری در تجزیه در مفهومی بسیار وسیع، یک دستگاه که برای تجزیه شیمیایی مورد استفاده قرار می‌گیرد، داده‌های کمی تولید نمی‌کند، بلکه در عوض بسادگی اطلاعات شیمیایی را به شکلی تبدیل می‌کند که آسانتر قابل مشاهده‌است.

    بنابراین به دستگاه می‌توان به صورت یک وسیله ارتباطی نگریست.

    دستگاه این هدف را در مراحل مختلف زیر انجام می‌دهد: تولید یک علامت تبدیل این علامت به علامتی با ماهیت متفاوت (تبدیل نامیده می‌شود).

    تقویت علامت تبدیل شده ارائه این علامت به صورت یک جابجایی بر روی یک صفحه مندرج یا صفحه یک ثبات.

    لزومی ندارد که تمام این مراحل مجموعا در هر دستگاه انجام گیرد.

    در نتیجهٔ ظهور این همه مدارات الکترونیکی در آزمایشگاه، یک شیمیدان امروزی خود را با این سوال روبرو می‌بیند که چه مقدار الکترونیک باید بداند تا بتواند موثرترین استفاده را از وسایل موجود برای تجزیه، بکند.

    مهم برای یک شیمیدان این است که قسمت عمده کوشش خود را به اصول شیمیایی، اندازه گیریها و محدودیتها و قوتهای ذاتی آن معطوف دارد.

    تقطیر جزء به جزء: برای جداکردن موادی که نقطه جوش آنها خیلی به هم نزدیک باشد از تقطیر جزء به جزء استفاده میکنند.

    اختلاف این روش با تقطیر ساده آن است که در این حالت از یک ستون تقطیر جزء به جزء استفاده میشود.

    ستونهای تقطیر جزء به جزء انواع متعددی دارند ولی در تمام آنها چند خصلت کلی مشاهده میشود.

    این ستونها مسیر عمودی را به وجود می آورند که باید بخار در انتقال از ظرف تقطیر به مبرد از آن بگذرد، این مسیر به مقدار قابل ملاحظه ای از مسیر دستگاه تقطیر ساده طویلتر است.

    هنگام انتقال بخار از ظرف تقطیر به بالای ستون مقداری از بخار متراکم میشود.

    مایع متراکم شده، در حالی که به پایین ستون می ریزد دوباره در تماس با بخاری که از پایین به بالا در جریان است به طور جزئی تبخیر میشود و به سمت بالا میرود و طی این میعان و تبخیر شدنهای متوالی بخار از جزء فرار تر غنی تر میشود، یعنی هرچه به سمت بالای ستون پیش میرویم غلظت جزء فرار تر بیشتر و هر چه به سمت پایین می آییم غلظت جزء غیر فرار بیشتر میشود.

    از نقطه نظر تئوری، جدا کردن دو ترکیب فرار به طور کامل، بوسیله تقطیر حتی زمانیکه اختلاف در نقطه جوش آنها زیاد باشد امکان پذیر نیست زیرا همیشه جزء دارای نقطه جوش پایین تر فشار بخارش را بر روی نقطه جوش جزء دیگر اعمال نموده و پاره ای از مولکولهای با نقطه جوش بالاتر نیز تقطیر میگردند.

    اما بهرحال در امور تجربی، بوسیله تقطیر جزء به جزء میتوان مخلوط اینگونه مایعات را در حد مطلوبی جدا نمود.

    شکل دستگاه تقطیر جزء به جزء: 1- سنگ جوش، 2- مخلوط دو یا چند ماده، 3- گرم کننده، 4- ظرف تقطیر (بالن)، 5- ستون تقطیر، 6- دماسنج، 7-خروجی آب، 8- ورودی آب، 9- سرد کننده، 10- رابط خمیده ساده، 11- ظرف گیرنده (استوانه مدرج) 12- محصول تقطیر مخلوط دو ماده با هم در برخی مواد تولید آزئوتروپ میکند، یعنی مخلوط با درصد معینی تا آخرین قطره تقطیر میشود.

    در اینگونه موارد نمیتوان مخلوط را بوسیله تقطیر جزء به جزء از یکدیگر جدا کرد.

    برای از بین بردن این حالت یا ماده دیگری به مخلوط اضافه میکنند تا آزئوتروپ دیگری که مطلوب باشد بدست آید و یا فشار را تغییر میدهند.

    مثلا الکل 95 درصد تشکیل آزئوتروپ میدهد که برای از بین بردن نقطه آزئوتروپ، بنزن به آن اضافه میکنند که در نتیجه نقطه آزئوتروپ دیگری با درصد آب بیشتر ایجاد میشود که بدین ترتیب آب خارج شده، الکل و بنزن باقی میماند که بوسیله تقطیر جزء به جزء به راحتی جدا میشود.

    بخش عملی الف)تقطیر جزء به جزء متانول و آب در یک بالن ته گرد 100 میلی لیتری مقدار 30 میلی لیتر متانول و 30 میلی لیتر آب بریزید و برای اطمینان از جوشش آرام (جلوگیری از غلیان محلول)، چند عدد سنگ جوش اضافه کنید دستگاه تقطیر جزء به جزء را مطابق شکل سوار کنید.

    از ابتدای شروع تقطیر حرارت را به گونه ای تنظیم کنید که سرعت تقطیر 10 الی 20 قطره در دقیقه باشد.

    درجه حرارتی که اولین قطره مایع از نوک دماسنج میچکد را یادداشت کنید.

    اگر ستون مایع طغیان میکند سرعت تقطیر را کم کنید.

    محصول تقطیر (مقطره) را در سه ظرف جدا در محدوده دمایی زیر جمع آوری نمایید.

    تا دمای 68 درجه مقطره را در ظرف (الف) ذخیره کنید.

    از 68 درجه تا 90 درجه مقطره را در ظرف (ب) جمع آوری نمایید.

    از 90 درجه به بعد، آنرا در ظرف (ج) ذخیره کنید.

    تقطیر را ادامه دهید تا 3-2 میلی لیتر مایع در ظرف تقطیر باقی بماند و سپس شعله را خاموش کنید.

    حجم مایعات جمع آوری شده در هر ظرف را اندازه گیری کرده و یاد داشت کنید.

    حجم مایع باقی مانده در ظرف تقطیر را نیز اندازه گیری نموده و یادداشت کنید.

    ب) تقطیر جزء به جزء بنزن و تولوئن در یک ظرف ته گرد 100 میلی لیتری 30 میلی لیتر بنزن و 30 میلی لیتر تولوئن ریخته و برای اطمینان از جوشش آرام، چند عدد سنگ جوش به آن اضافه کنید.

    دستگاه تقطیر جزء به جزء را آماده کنید.

    در این دستگاه محل حباب دماسنج اهمیت ویژه ای دارد، به محل آن نسبت به لوله جانبی سر دستگاه تقطیر توجه کنید (شکل دستگاه تقطیر).

    سه ظرف 50 میلی لیتری به عنوان ظرف گیرنده با برچسب (الف)، (ب) و (ج) آماده کنید.

    در عمل باید نوک رابط خلأ تا داخل گردن این ظرف امتداد داشته باشد، بین رابط و ظرف گیرنده یک فضای عمودی باقی نگذارید زیرا این فضا باعث سهولت فرار بخارهای قابل اشتعال میشود.

    ظرف تقطیر را با چراغ گاز حرارت دهید.

    چراغ را طوری قرار دهید که نوک شعله با توری سیمی تماس پیدا کند یا درست زیر آن باشد، و شعله را از جریان باد محفوظ نگه دارید به نحوی که بتوانید حرارت را تا حد ممکن به دقت تنظیم کنید.

    به مجردی که محلول شروع به جوشیدن کرد و بخارهای رفلاکس شده به گرما سنج رسید، شعله را طوری میزان کنید که تقطیر فقط با سرعتی در حدود یک قطره مایع مقطر در هر یک یا دو ثانیه به طور یکنواخت ادامه یابد.

    اولین مایع مقطر را در ظرف گیرنده (الف) جمع آوری کنید.

    وقتی که درجه حرارت دهانه خروجی به 80 درجه رسید، ظرف گیرنده (الف) را با ظرف گیرنده (ب) و در 105 درجه آن را با ظرف گیرنده (ج) عوض کنید.

    تقطیر را ادامه دهید تا حدود 2 میلی لیتر مایع در ظرف تقطیر باقی بماند و بعد شعله را خاموش کنید.

    حجم اجزاء تقطیر شده در ظرف گیرنده (الف)، (ب) و (ج) را به کمک استوانه مدرج اندازه بگیرید و یاداشت کنید.

    اجازه دهید تا مایع موجود در ستون تقطیر به داخل ظرف تقطیر برگردد، حجم باقی مانده را اندازه گرفته و یادداشت کنید.

    بطور کلی برج تقطیر شامل 4 قسمت اصلی می باشد: 1.

    برج (Tower) 2.

    سیستم جوشاننده (Reboiler) 3.

    سیستم چگالنده (Condensor) 4.

    تجهیزات جانبی شامل: انواع سیستمهای کنترل کننده، مبدلهای حرارتی میانی، پمپها و مخازن جمع آوری محصول.

    • برج (Tower) بطور کلی برجهایی که در صنعت جهت انجام عمل تقطیر مورد استفاده قرار می گیرند، به دو دسته اساسی تقسیم می شوند: 1.

    برجهای سینی دار (Tray Towers) 2.

    برجهای پرشده (Packed Towers) برجهای سینی دار بر اساس نوع سینی های به کاررفته در آن به 4 دسته تقسیم می شوند: 1.

    برجهای سینی دار از نوع کلاهکی (فنجانی) (Bubble Cap Towers) 2.

    برجهای سینی دار از نوع غربالی (Sieve Tray Towers) 3.

    برجهای سینی دار از نوع دریچه ای(Valve Tray Towers) 4.

    برجهای سینی دار از نوع فورانی (Jet Tray Towers) هر کدام از انواع برجهای مذکور دارای مزایا و معایبی هستند که در بخشهای بعدی مورد بحث قرار خواهند گرفت.

    طرز کار یک برج سینی دار بطور کلی فرآیندی که در یک برج سینی دار اتفاق می افتد، عمل جداسازی مواد است.

    همانطور که ذکر شد فرآیند مذکور به طور مستقیم یا عیرمستقیم انجام می پذیرد.

    در فرآیند تقطیر منبع حرارتی (Reboiler)، حرارت لازم را جهت انجام عمل تقطیر و تفکیک مواد سازنده یک محلول تأمین میکند.

    بخار بالارونده از برج با مایعی که از بالای برج به سمت پایین حرکت می کند، بر روی سینی ها تماس مستقیم پیدا می کنند.

    این تماس باعث ازدیاد دمای مایع روی سینی شده و نهایتا باعث نزدیک شدن دمای مایع به دمای حباب می گردد.

    با رسیدن مایع به دمای حباب به تدریج اولین ذرات بخار حاصل می شود که این بخارات غنی از ماده فرار (ماده ای که از نقطه جوش کمتری و یا فشار بالاتری برخوردار است) می باشد.از طرفی دیگر در فاز بخار موادی که از نقطه جوش کمتری برخوردار هستند، تحت عمل میعان قرار گرفته و بصورت فاز مایع به سمت پایین برج حرکت می کند.

    مهمترین عملکرد یک برج ایجاد سطح تماس مناسب بین فازهای بخار و مایع است.

    هر چه سطح تماس افزایش یابد عمل تفکیک با راندمان بالاتری صورت میگیرد.

    البته رژیم جریان مایع بر روی سینی نیز از جمله عوامل مهم بر عملکرد یک برج تفکیک می باشد.

    اینک به بیان عبارات و اصطلاحاتی که در این ارتباط (فرآیند تقطیر) کاربرد زیادی دارد پرداخته می شود.

    خوراک (Feed) مخلوط ورودی به داخل برج که ممکن است مایع، گاز و یا مخلوطی از مایع و گاز باشد، خوراک (Feed) نام دارد.

    معمولا محل خوراک در نقطه مشخصی از برج است که از قبل تعیین می شود.

    در برجهای سینی دار محل ورودی خوراک را سینی خوراک یا (Feed Tray) می نامند.

    از جمله مشخصات مهم سینی خوراک این است که از نقطه نظر درجه حرارت و ترکیب نسبی (کسر مولی) ، جزء مورد نظر با خوراک ورودی مطابقت داشته باشد.

    البته محل خوراک ورودی به حالت فیزیکی خوراک نیز بستگی دارد.

    معمولا اگر خوراک بصورت مایع باشد، همراه با مایعی که از سینی بالایی سرازیر می شود به درون سینی خوراک وارد می گردد.

    اگر خوراک بصورت بخار باشد معمولا آن را از زیر سینی خوراک وارد می کنند و اگر خوراک بصورت مخلوطی از مایع و بخار باشد، بهتر است که ابتدا فاز مایع و بخار را از هم جدا نموده و سپس به طریقی که گفته شد خوراک را وارد برج نمایند.

    ولی عملا به منظور صرفه جویی از هزینه های مربوط به تفکیک دو فاز بخار و مایع، عمل جداسازی به ندرت صورت می گیرد.

    محصول بالاسری (Overhead Product) آنچه از بالی برج به عنوان خروجی از آن دریافت می شود محصول بالاسری نامیده می شود که معمولا غنی از جزئی که از نقطه جوش کمتری برخوردار است می باشد.

    محصول ته مانده (Bottom Product) ماده ای که از پایین برج خارج می شود ته مانده یا محصول انتهایی (Bottom) نام دارد و معمولا غنی از جزء یا اجزائ سنگین تر (که از نقطه جوش بالاتری برخوردار می باشند) خواهد بود.

    نسبت برگشت (پس ریز) (Reflux Ratio) نسبت مقدار مایع برگشتی به برج بر حسب مول یا وزن به مایع یا بخاری که به عنوان محصول از سیستم خارج می شود را نسبت برگشتی می گویند و آن را با حرف R نشان می دهند.

    نسبت برگشتی و اثرات آن بر شرایط کارکرد برج با افزایش نسبت مایع برگشتی تعداد سینی های مورد نیاز جهت تفکیک (طول برج) کاهش می یابد، اما در مقابل آن بار حرارتی کندانسور و جوش آور و مقادیر بخار و مایع در طول برج افزایش می یابد.

    در این صورت نه تنها لازم است سطوح گرمایی مورد نیاز به آنها اضافه شود، بلکه به دلیل افزایش میزلن جریان مایع و بخار سطح مقطع برج نیز افزایش می یابد.

    هنگامی که مقدار R زیاد باشد تعداد مراحل و طول برج به کمترین مقدار خود می رسد و تمام محصول بالاسری به عنوان مایع برگشتی وارد برج می شود و این حالت را برگشت کامل یا (Total Reflux) می نامند.

    در شرایطی که R در کمترین مقدار خود باشد طول برج و تعداد مراحل در بیشترین مقدار خود خواهد بود و عمل تفکیک به شکل کاملی انجام نخواهد شد.

    مقدار عملی R معمولا بین حالت برگشت کامل و حداقل میزان R است.

    در بیشتر موارد مقدار مایع برگشتی بر روی درجه حرارت برج نیز تأثیر می گذارد.

    معمولا در یک برج تقطیر دمای انتهای آن به مراتب بیشتر از دمای پایین آن است و این اختلاف دما در طول برج وجود خواهد داشت.

    میزان جریان برگشتی به عنوان یک عامل کنترلی بر روی درجه حرارت سیستم خواهد بود.

    • جوش آور (Reboiler) جوش آورها که معمولا در قسمت های انتهای برج و کنارآن قرار داده می شود، وظیفه تأمین حرارت یا انرژی لازم را برای انجام عمل تقطیر به عهده دارند.

    معمولا جوش آورها به عنوان یک مرحله تعادلی در عمل تقطیر و به عنوان یک سینی در برجهای سینی دار در نظر گرفته می شوند.

    انواع جوش آورها مهمترین انواع جوش آورها که در صنایع شیمیایی کاربرد زیادی دارند، عبارتند از: 1.

    دیگهای پوشش (Jacketted Kettle) 2.

    جوش آورهای داخلی (Internal Reboiler) 3.

    جوش آور نوع Kettle 4.

    جوش آور ترموسیفونی عمودی (Vertical Termosiphon Reboiler) 5.

    جوش آور ترموسیفونی افقی (Horizontal Thermosiphon Reboiler) 6.

    جوش آور از نوع سیرکولاسیون اجباری (Forced Circulation Reboiler) در جوش آورهای ترموسیفونی یا جوش آورهای با گردش طبیعی، حرکت سیال بر اساس اختلاف دانسیته نقاط گرم و سرد صورت می پذیرد.

    این پدیده می تواند به دو صورت انجام پذیرد که عبارتند از : 1.

    جوش آوری با یکبار ورود سیال (Once – Thorugh Reboiler) 2.

    جوش آور با چرخش سیال (Recirculating Reboiler) معیارهای موجود برای انتخاب جوش آور مناسب بطور کلی نکاتی که در انتخاب یک جوش آور باید مد نظر قرار گیرد عبارتند از : 1.

    سرعت انتقال (حداقل سطح) 2.

    فضا و خطوط لوله لازم 3.

    سهولت نگهداری 4.

    تمایل به رسوب و جرم گذاری سیال 5.

    زمان اقامت سیال در فرآیند 6.

    پیداری عملیاتی 7.

    هزینه عملیاتی 8.

    افزایش میزان بخار تولیدی هر کدام از جوش آورها مزایا و معایبی دارد که در کتب مرجع جمع آوری شده است.

    از این داده ها می توان برای طراحی اولیه کمک گرفت.

    ولی بطور کلی متداولترین و اقتصادی ترین جوش آوری که در صنایع شیمیایی و پتروشیمی مورد استفاده قرار می گیرد نوع ترموسیفونی می باشد، خصوصا نوع افقی آن که در سیستمهای تقطیر کاربرد زیادی دارد.

    انتخاب نوع Reboiler انتخاب نوع Reboiler یا جوش آور به عوامل زیر بستگی دارد: 1.

    خواص فیزیکی سیال بویژه ویسکوزیته و تمایل به رسوبدهی سیال 2.

    فشار عملیات (خلأ یا تحت فشار) 3.

    روش قرار گرفتن تجهیزات و فضای قابل استفاده مزایای جوش آورهای ترموسیفونی افقی 1.

    ابعاد واحدهای افقی از نقطه نظر طول لوله ها و وزن محدودیتی نداشته و بنابراین برای سطوح حرارتی بزرگ، نصب واحدهای افقی مطلوبتر و آسانتر می باشد.

    2.

    از آنجائیکه در جوش آورهای ترموسیفونی افقی، سیال در داخل پوسته حرکت می نماید، از نظرعدم رسوب و جرم گذاری و سهولت در نگهداری و استفاده از آنها ترجیح دارد.

    3.

    این جوش آورها از نظر طراحی هیدرولیکی سطوح مایع مجاز در سیستم، منعطف تر می باشند و جریان های با گرد بالایی را می توان بدون هیچ مشکلی در آن ایجاد نمود.

    4.

    جوش آورهای ترموسیفونی افقی نسبت به نوع عمودی، افزایش نقطه جوش کمتری دارند و این مسئله در موارد خاصی کخ سیال نسبت به دما حساس بوده و یا سیستم در حالت خلأ عمل می نماید مزیتی مهم محسوب می گردد.

    • چگالنده (Condenser) نقش چگالنده در واقع تبدیل بخارات حاصل از عمل حرارت دهی به مخلوط، به مایع می باشد.

    این امر در اصطلاح میعان یا چگالش نامیده می شود و دستگاهی که در آن عمل مذکور انجام می شود چگالنده نام دارد.

    به طور کلی چگالنده ها به دو دسته اساسی تقسیم می شوند: 1.

    چگالنده های کامل (Total Condenser) 2.

    چگالنده های جزئی (Partial Condenser) در صورتیکه تمام بخار بالای برج به مایع تبدیل شود و بخشی ازآن وارد برج شده و بخش دیگر وارد مخزن جمع آوری محصول گردد عمل میعان کامل (Total Condensation) انجام شده است.

    اما اگر بخشی از بخارات حاصل مایع شده و بخش دیگر به صورت بخار از کندانسور خارج شود به آن یک کندانسور جزئی گفته می شود.

  • فهرست:

    ندارد.


    منبع:

    ندارد.
     

موضوع : علم تکنولوژي مواد فصل اول طبقه بندي مواد کار 1- طبقه بندي مواد کار 1-1- تعريف تکنولوژي مواد: علمي که درباره استخراج، تصفيه، آلياژ کردن، شکل دادن، خصوصيات فيزيکي، مکانيکي، تکنولوژيکي، شيميايي و عمليات حرارتي بحث مي‌کند، تکنولوژي

بخش نخست: مقدمه همانطور که مي دانيم روغن محصولي است از فراورده هاي پالايشگاهي که از مواد نفتي مشتق شده است و ريشه ي معدني دارد يعني از تقطير نفت خام بدست مي آيد . بعضي از روغن ها داراي خواص پاک کنندگي خوبي هستند که البته اين خاصيت ب

واحد هاي قديم مجتمع : براي اولين بار در سال 1338 اقدام به احداث يک کارخانه کود شيميايي در مرودشت شيراز گرديد که سرمايه آن بالغ بر 2900 ميليون ريال بوده است اين کارخانه در سال 1342 مورد بهره برداري قرار گرفت و در سال 1344 به شرکت ملي صنايع پ

اصول زيست شناسي گرچه زيست شناسي بر خلاف علم فيزيک که معمولا سيستم هاي زيست شناختي را بر حسب اشيايي که تسليم قوانين فيزيکي تغيير نا پذير تشريح شده با رياضيات را توصيف نمي کند، با اينحال توسط بسياري از اصول و مفاهيم اصلي توصيف مي گردد که شامل: جامعي

چکیده یکی از مشکلات اساسی که در اکثر سازه ها به چشم می خورد مشکل نم و رطوبت می باشد که در بعضی مواقع خسارات جبران ناپذیری را به ساز ها و ساختمان وارد می نماید و یکی از راهکارهای مقابله با ‎آن عایقکاری رطوبتی می باشد . در ایران با توجه به اقلیم و آب و هوا و نیز وجود منابع عظیم نفتی متداولترین عایق رطوبتی قیر و گونی می باشد که با پیشرفت تکنولوژی این روش جای خود را به عایقهای پیش ...

مقدمه باید توجه داشت که بهره‌مندی کودکان و نوجوانان از کانون خانوادگی با فضایی سرشار از صمیمیت، محبت و عطوفت، و بنای روابط بین دو همسر با فرزندان برپایه اخلاق و معنویت و اتخاذ شیوه‌های مبتنی بر معنویت دینی وعقلی در تربیت آنان از ضروریات اولیه در رشد و بالندگی شخصیتی و معنوی فرزند در خانواده است. سلامت و سعادت جامعه به سعادت و پویایی نظام خانواده وابسته است و سلامت و تعادل و ...

مقدمه میزان تولید سیب : استان خراسان پس از استان اذربایجان غربی دومین را از نظر تولید سیب دارامی باشد . به طوری کلی انواع سیب های به عمل آمده در استان خراسان را بر حسب وا ریته به دو نوع :1- سیب محلی 2- سیب خارجی تقسیم محلی مشهور : 1=سیب عباسی 2= سیب شیخی 3= سیب علی موری 4= سیب گلشاهی 5= سیب گلاب 6= سیب قاسم شاهی 7= سیب اخلمد بعضی از این واریته ها تا بستانه (شیخی وعلی موری ) و ...

معرفي شرکت اين شرکت در سال 1341، با مشارکت بخش خصوصي و با امتياز شرکت چندمليتي EXXON تاسيس شد و محصولات خود را با نام تجاري اسو (ESSO) به بازار عرضه نمود. در سال 1345 با تکميل احداث واحدهاي عملياتي و راه‌اندازي آن دستيابي به توليد روغن موتور، ر

مقدمه تصفيه و تهيه بنزين اتومبيل – بنزين يکي از چند مشتقات نفتي است که از نفت خام بدست مي آيد نفت خام در تصفيه خانه و در داخل يک مخزن بلند فلزي تقطير مي شود . اين مخزن را برج تقطير جزء به جزء‌(Fractionating Tower) مي گويند . نفت خام در د

شرح سيستم تصفيه خانه» 1-سيستم تغذيه آب خام نيروگاه شازند 2- سيستم تصفيه خانه نيروگاه شازند روشهاي کلي تصفيه آب 1-رزين هاي تعويض يوني 2-گاززدائي 3-استفاده ازموادشيميائي 4-فيلتراسين 5-تقطيرالکترودياليز سيستم تغذيه آب خام : آب موردنيازنيروگاه ازچاه تام

ثبت سفارش
تعداد
عنوان محصول