دانلود تحقیق نظریه کوانتوم

Word 132 KB 4927 9
مشخص نشده مشخص نشده فیزیک - نجوم
قیمت قدیم:۱۲,۰۰۰ تومان
قیمت: ۷,۶۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • جی .

    رابرت .

    اوپنهایمر در کتاب علم و فرزانگی در رابطه با سرگذشت کوانتوم چنین می گوید : « شاید هرگز تمامی تاریخ این حادثه روایت نشود .

    برای عرضه کردن آن هنری به آن اندازه توانا لازم است که برای روایت کردن سرگذشت اودیپوس یا کرامول ضرورت داشته است ، ولی این حادثه در قلمروی چندان دور از تجربه های روزانه ی ما صورت پذیرفته است که کم تر احتمال آن می رود که شاعر یا مورخی از آن با خبر شود .

    » این داستان ، سرگذشت انقلابی پر تلاطم است ؛ سرگذشت فروپاشی و انقراض فیزیکی از خود راضی است که سالیان دراز بر حوزه ای محدود فرمان رانده بود و سرگذشت دوران فطرتی است که نابودی اش را از پیش تناقضات درونی اش رقم زده بودند ، و سرانجام سرگذشت ظهور توفان آسای نظامی از هفت آب گذشته یعنی مکانیک کوانتومی است .

    درآمد در آزمایشگاهی کاملاً تاریک ، ماشینی الکتریکی قرار گرفته است و روی آن دو کره ی فلزی سوار شده است .

    این همان ماشین متعارف ایجاد جرقه های الکتریکی است که زائده ای کوچک هم بر آن اضافه شده است .دو صفحه ی فلزی با میله های رسانای باریکی به این کره ها متصل شده اند .

    در روی میز دیگر ، حلقه ی ساده ی تقریباً از سیمی سخت و محکم بر پایه ای عایق سوار شده است .

    از نظر آزمایشگر شکاف کوچکی که در این حلقه است چزء اصلی دستگاه به شمار می آید .

    اگر درست حدس زده باشد ، در همین جا ست که راز از پرده بیرون خواهد افتاد .

    همه چیز آماده است ، آزمایشگر کلیدی را وصل می کند تا جرقه ها با سر و صدا بین دو کره رد و بدل شوند .

    او از جرقه ها روی بر می گرداند و مدتی منتظر می ماند تا چشمش به تاریکی عادت کند .

    آیا این که او می بیند شکاف حلقه از فروغ ضعیفی پر شده است حقیقت دارد یا تصوری بیش نیست ؟

    پاسخ دادن به این پرسش آسان نیست .

    ممکن است فقط بازتاب نوری باشد .

    به آرامی پیچی را که دو سر حلقه را به هم نزدیک می کند می چرخاند .

    با باریک تر شدن شکاف ، فروغ درخشان تر می شود .

    باز هم دوسر حلقه را به هم نزدیک تر می کند تا سرانجام تقریباً با هم تماس پیدا می کنند .

    حال دیگر تردیدی باقی نمانده است .

    به همین سادگی بود که آدمی برای نخستین بار زیرکانه به وجود سیگنال رادیویی پی برد .

    این واقعه در سال 1887 روی داد و آزمایشگر ، یک فیزیکدان برجسته ی آلمانی بود به نام هاینریش هرتز .

    ارزش اقتصادی این کشف بی اندازه بود .

    پس چرا انسان قابلی چون هرتز امتیاز های بهره برداری از آن را برای مارکونی واگذاشت ؟

    چیزی که هرتز را به انجام آزمایش های دوران سازش واداشت ، به هیچ روی فکر ابداع چیزی عملی چون تلگراف رادیویی ( تلگراف بی سیم ) نبود .

    شاید تلگراف رادیویی هم مهم ترین حاصل این آزمایش ها به شمار نمی رفت .

    هرتز سدی را می شکست که مدتی مدید دانشمندان را از پیشرفت بازداشته بود : آزمون درستی نظریه ای ریاضی که به نور ، الکتریسیته و مغناطیس مربوط می شد و سه سال پیش تر از سوی جیمز کلرک ماکسول ، فیزیکدان اسکاتلندی ، مطرح شده بود .

    و ستایش این آزمایش از سوی همگان به دلیل این بود که هرتز توانسته بود این واقعیت را به طریق تجربی اثبات کند .

    اما مقدر بود که این پدیده ی ظاهراً پیش پا افتاده و بی اهمیت ، در دست اینشتین نقش خطیری در انقلاب کوانتومی بازی کند .

    برای آن که ارزش کار ماکسول و هرتز و تمامی سرگذشت کوانتوم را بفهمیم ، باید نخست نگاهی کوتاه به بعضی از نظریه هایی بپردازیم که آدمی درباره ی نور پرداخته است .

    گرچه در دوران معاصر ، دانشمندان یهودی برجسته ای وجود داشته اند ، ولی حکمای عبرانی باستان مایه ی چندانی در پژوهش علمی از خود نشان ندادند .

    ایشان با ادای این گفته که " و خدا گفت نور باشد ؛ و نور شد " ، از کنار مسئله ی نور به سرعت گذشتند تا به مسائل مهم تری بپردازند .

    نور در نزد آن ها چیزی بیش از ضد تاریکی ، و شرطی برای توانایی دیدن نبود .

    اما یونانیان با شم علمی قوی تری ، ایده ی نوینی را با اهمیت بسیار مطرح کردند .

    آنان درک کردند که باید چیزی وجود داشته باشد که در فاصله ی میان چشمان ما ، چیز هایی که می بینیم ، و چراغ هایی که آن ها را می افروزند ، پلی ارتباطی برقرار کند .

    لذا به نور واقعیتی عینی بخشیدند و به مطالعه اش برخاستند ونظریه هایی پیرامون آن پرداختند .

    هنگامی که دانشمند امروزی از نور سخن می گوید یک چنین چیزی در ذهن خود دارد .

    تمایز میان صرف قدرت دیدن ، و نور عینی تمایزی مهم است ، درست مانند تمایزی احساسی که از اصابت سنگ به آدمی دست می دهد و خود سنگ که فضا را می پیماید تا به هدف اصابت کند .

    متأسفانه ، یونانیان پس از آغازی چنین درخشان ، درگیر نظریه های متضاد شدند .

    یکی از این نظریه ها می گفت نور چیزی است که مانند آبی که از مجرایی تنگ بیرون می آید ، از چشم ها جریان پیدا می کند .

    بر پایه ی این ایده ، وقتی یک شیء را می بینیم که این جریان نور را به سویش متوجه کنیم تا با آن برخورد کند ؛ همان طور که مثلاً یک نابینا با پیش بردن دست ها و لمس کردن چیزی ، آن چیز را « می بیند » .

    این نظریه این نکته را توضیح می دهد که هرچیز را تنها هنگامی می بینیم که روبه رویمان باشد ، و نیز این که با چشمان بسته نمی توانیم ببینیم ؛ اما نمی تواند توضیح دهد که مثلاً چرا در تاریکی نمی توانیم ببینیم .

    در گیرودار پاسخ گویی به این ایراد ها ، افلاطون فیلسوف نظریه ای پرداخت که بی گمان ، در فراوانی ساز و کارهای زائد ، بی همتاست .

    او برهم کنشی سه گانه میان سه جریان مختلف قائل بود ، یکی از چشمان ، یکی از آن چه دیده می شود ، و یکی از چراغی که آن را روشن می کند !

    مشکل افلاطون در کج نهادن خشت اول بود .

    بر مبنای ایده های جدید ، هر شیء به این علت دیده می شود که نور از آن به چشم ما وارد می شود نه این که از چشمان خارج شود ، و جالب این جاست که این نکته ، یکصد سال پیش از افلاطون ، از جانب فیثاغورث بزرگ ، با قوت تمام مطرح شده بود .

    نظریه ی فیثاغورثی ساده است .

    بنابراین نظریه ، نور چیزی است که که از هر جسم درخشانی در تمام جهات جریان پیدا می کند و پخش می شود ، فقط در برابر موانع فوراً به عقب برمی گردد .

    اگر نور ، سرانجام به طور تصادفی وارد چشمان شود ، در ما احساس دیدن چیزی را به وجود می آورد که نور در واپسین مرحله از روی آن جهیده است ...

    هرکسی از نظریه کوانتوم شوکه نشود آن را نفهمیده است.

    نیاز بوهر حوزه های معدودی از پژوهش علمی وجود داشته اند که مانند نظریه کوانتوم تاثیر عمیقی بر فلسفه داشته باشند.

    دلیل امر به این حقیقت مربوط می شود که به قول نویسنده کتاب های علمی جان گریپین: «در دنیای مکانیک کوانتوم، قوانین فیزیک که برای هر کسی آشنا هستند دیگر عمل نمی کنند، در عوض احتمالات هستند که بر رویدادها حکم می رانند.»آلبرت اینشتین، برخلاف بور، نه تنها از برخی از استلزامات نظریه کوانتوم تکان خورده بود، بلکه از آنها هراسان بود.

    چنانچه مشهور است او با عدم قطعیت کوانتومی با همین اظهارنظر صریح مخالفت می کرد که: «خدا تاس نمی اندازد.» اروین شرودینگر یکی از معماران نظریه کوانتوم، که به همان اندازه از این وضع آشفته بود، تجربه خیالی ساده ای را طرح کرد تا بیهودگی یکی از این استلزامات را نشان دهد.

    او اتاقی دربسته یا جعبه ای را تصور کرد که گربه ای زنده درون آن قرار دارد و نیز حاوی «وسیله ای جهنمی» شامل یک شیشه سیانور و مقدار کمی ماده رادیواکتیو است.

    این مقدار ماده رادیواکتیو آن قدر کم است که در طول یک ساعت ممکن است یکی از اتم های ماده رادیواکتیو متلاشی شود، اما با احتمالی مشابه ممکن است هیچ کدام از اتم ها دچار تلاشی نشود.

    اگر اتم رادیواکتیو تجزیه شود پرتوهای حاصل یک شمارشگر گایگر را به کار می اندازد و از طریق یک رله چکش کوچکی را فعال می کند که شیشه سیانور را می شکند و باعث مرگ گربه می شود در زندگی روزمره احتمال پنجاه- پنجاه وجود دارد که گربه کشته شود و بدون نگاه کردن به درون جعبه می توانیم با خوشحالی تمام بگوییم که گربه درون آن مرده یا زنده است.

    اما براساس نظریه کوانتوم هیچ کدام از این دو امکانی که برای ماده رادیواکتیو و در نتیجه گربه وجود دارد واقعیت ندارد، مگر آنکه مشاهده شوند فروپاشی اتمی نه اتفاق می افتد و نه اتفاق نمی افتد، گربه نه کشته می شود و نه کشته نمی شود، مگر هنگامی که ما به درون جعبه نگاه کنیم و ببینیم که چه اتفاقی رخ داده است.

    نظریه پردازانی که تفسیر استاندارد از مکانیک کوانتومی را می پذیرند می گویند که گربه در حالتی غیرقطعی و نامعین نه مرده و نه زنده وجود دارد، تا زمانی که یک مشاهده گر واقعاً به درون جعبه بنگرد و ببیند که گربه زنده است یا مرده.متاسفانه برخلاف میل شرودینگر، این تجربه تخیلی نه تنها باعث نشد که فیزیکدانان پوچی بعضی از خصوصیات نظریه کوانتوم را درک کنند، جعبه شرودینگر برای اکثریت فیزیکدانان به مثال اعلای استلزام های غیرمعمول و فوق العاده این نظریه بدل شد.

    «ابرمرتبه حالت ها» به جای به هم ریختن نظریه کوانتوم به خصلت معرف آن بدل شد.آنهایی که تجربه خیالی شرودینگر را با معنایی که در نظر داشتند مطرح می کردند می توانستند با این حقیقت تسکین یابند که موقعیت یاوه ای که در آن گربه به طور همزمان هم زنده و هم مرده است به طور واقعی در آزمایشگاه قابل بازآفرینی نیست دلیل این امر ناپیوستگی کوانتومی است.سرعت این ناپیوستگی در یک سیستم فیزیکی به اندازه آن بستگی دارد.

    در حالی که در موجودیت های فیزیکی در اندازه اتم ممکن است در یک «ابرمرتبه حالت ها» وجود داشته باشند، موجودیت های بزرگ تر، به خصوص در اندازه یک گربه، که متشکل از میلیاردها اتم هستند، در یک حالت منفرد و معین ثابت می شوند.

    در نتیجه افرادی که با موضع اینشتین همدلی دارند می توانند مدعی شوند که گرچه خصوصیات غریب کوانتومی ممکن است در جهان زیراتمی مصداق داشته باشند، در دنیای روزمره متشکل از اشیای معمول مثل گربه، کتاب و افراد و...

    خدا از هر لحاظ تاس نمی اندازد.

    اما اکنون حتی این دفاع (تاحدی نومیدانه) از شعور عام در خطر سرنگون شدن است.

    فیزیکدانان ویلیام مارشال، کریستوف سایمون و ویک بوویستر اخیراً آزمایشی را طراحی کرده اند که در آن می توان از «ناپیوستگی کوانتومی» اجتناب کرد تا به یک «ابرمرتبه حالت ها» در مورد جسمی در اندازه حدود یک گلبول قرمز (به طور مشخص آینه ای با قطر ??

    میکرون یا یک صدم میلی متر) دست یافت، اندازه ای که شاید در مقایسه با یک گربه بزرگ نباشد ولی در مقیاس های اتمی بسیار بزرگ است.

    براساس گزارش مارشال و همکارانش: «این جسم تقریباً دامنه ای ?

    برابر بیشتر از هر ابرمرتبه مشاهده شده تا به حال دارد.» این آزمایش فرضی در اصول بر تعامل یک فوتون منفرد نور با یک آینه کوچک که بر روی یک بازوی کوچک نصب شده است تکیه دارد.

    فشار تابش فوتون برای جابه جا کردن آینه کوچک کافی است.

    به وجود آمدن یک ابرمرتبه فوتون باعث می شود سیستم به صورت یک ابرمرتبه حالت های متناظر با دو جایگیری متمایز آینه تکوین پیدا کند.پیشنهاد این دانشمندان اولین پیشنهاد برای تعیین کردن چگونگی ایجاد و مشاهده یک ابرمرتبه ماکروسکوپیک نیست، اما اولین پیشنهادی محسوب می شود که امکان تحقق آن با تکنولوژی فعلی وجود دارد.

    در واقع در حال حاضر ساختن اجزای لازم برای این آزمایش در جریان است و بنابراین تنها اندکی باید صبر کرد تا گونه ای از «وسیله جهنمی» شرودینگر به واقعیتی مشاهده پذیر بدل شود.

    معانی ضمنی این آزمایش بر آفرینندگان آن پوشیده نیست چرا که بدون اغراق اظهار می کنند: «اینکه انجام آزمایشی بر روی یک میز توانایی بالقوه به آزمون گذاشتن مکانیک کوانتوم را در نظامی کاملاً نوین در اختیار بگذارد، امری فوق العاده است و غیرعادی تر این است که این آزمایش بر مبنای تجربه ای فرضی تکوین یافته است که در اصل برای افشا کردن پوچی نظریه کوانتوم طراحی شده بود.

    شرودینگر مسلماً از روبه رو شدن با این آزمایش شوکه می شد از اوائل قرن بیستم دو نظریه ی بزرگ نسبیت و مکانیک کوانتوم، برای پاسخگویی به مشکلاتی که فیزیک کلاسیک با آنها دست بگریبان بود، پا به عرصه وجود نهادند.

    جالب این است که هر دو نظریه تقریباً همزمان مطرح شدند و سیر تکاملی خود را طی کردند.

    نخست نسبیت خاص در سال 1905 تنها در محدوده ی دستگاه های لخت بکار گرفته شد و در سال 1915 تحت عنوان نسبیت عام به دستگاه های شتابدار تسری یافت.

    مکانیک کوانتوم قدیم در سال 1900 با طرح کوانتومی بودن انرژی اظهار شد و در دهه ی 1920 سیر تکاملی خود را پیمود همواره این سئوال مطرح بود که آیا این دو نظریه بزرگ را می توان با یکدیگر ترکیب کرد؟

    دیراک توانست نسبیت خاص و مکانیک کوانتوم را بصورت مکانیک کوانتوم نسبیتی با هم ادغام کند.

    به دنبال آن سئوال این بود که چگونه می توان مکانیک کوانتوم و نسبیت عام را با هم ترکیب کرد؟

    نظریه نسبیت عام اینشتین نظریه‌ای در باره جرم‌های آسمانی بزرگ مثل ستارگان، سیارات و کهکشان‌هاست که برای توضیح گرانش در این سطوح بسیار خوب است مکانیک کوانتومی نظریه‌ای است که نیروهای طبیعت را مانند پیام‌هایی می‌داند که بین فرمیون‌ها (ذرات ماده) رد و بدل می‌شوند.

    مکانیک کوانتومی در توضیح اشیاء، در سطوح بسیار ریز خیلی موفق بوده بوده است هاوکینگ می گوید " یک راه برای ترکیب این دو نظریه بزرگ قرن بیستم در یک نظریه واحد آن است که گرانش را همانطور که در مورد نیروهای دیگر با موفقیت به آن عمل می‌کنیم، مانند پیام ذرات در نظر بگیریم.

    یک راه دیگر بازنگری نظریه نسبیت عام اینشتین در پرتو نظریه عدم قطعیت است با آنکه نسبیت و مکانیک کوانوتم هر دو با در توجیه پدیده های حوزه ی خود، از توانایی خوبی برخوردارند، اما تسری برخی مفاهیم از مکانیک کلاسیک به فیزیک مدرن مانع از ترکیب این دو نظریه بزرگ هستند.

    بهمین دلیل نظریه سی.

    پی.

    اچ.

    تصریح می کند که مکانیک کلاسیک، مکانیک کوانتوم و نسبیت را بایستی تواما و همزمان مورد بررسی مجدد قرار داد.

    علاوه بر آن چنین بررسی مجددی تا زمانیکه نظریه هیگز نیز مورد توجه قرار نگیرد راه به جایی نخواهد برد.

    بهمین دلیل باید از مشکلات مکانیک کلاسیک شروع کنیم و ببینیم که آیا این مشکلات در نسبیت و مکانیک کوانتوم بر طرف شده یا نه؟

    طبیعت و عدم قطعیت در سال 1935 میلادی یوکاوا دانشمند ژاپنی برای توجیه پایداری هسته و به منظور نشان دادن بر هم کنش بین نوکلئون ها ی آن نیرویی پیشنهاد نمود که از بردی در حدود یک فمتومتر 10^-15m برخوردار بود و جرم ذرات میدان که نقش انتقال این نیرو رابر عهده دارند را 200 مگا الکترون ولت تخمین زد ذرات پیشنهادی یوکاوا مزون (متوسط) نامیده شدند چرا که جرم ذره فرضی او حد واسط بین جرم ذرات شناخته شده سبک (الکترون ) و نوکلئون های سنگین بود در سال1947 میلادی یعنی دوازده سال بعد یک فیزیکدان انگلیسی به نام سسیل پاول با مطالعه پرتو های کیهانی این مزون را که به پیون معروف است کشف نمود.

    برد این ذره را می توان به طرز جالبی با استفاده از اصل عدم قطعیت در انرژی بدست آورد بر اساس اصل عدم قطعیت ، یک ذره مجازی تا زمانی که t بزرگتر از آنچه که این اصل مجاز می شمارد نباشد می تواند بوجود آید و برای مدت زمان t دوام داشته باشد انطباق جالب برد ذره مزون پی بدست آمده از محاسبات یوکاوا با نتایج حاصل از رابطه عدم قطیعت در انرژی گواهی بر تایید تجربی این اصل می‌باشد پیامدهای فیزیک کوانتومی هر نظریه جدید خواه ناخواه با خود یکسری نگرشهای جدید نسبت به عالم به ارمغان میاورد چنانچه نسبیت جهان کوچک ما ر ا وسعت بخشید وافق محدود عالم ما را تا میلیاردها سال نوری گسترش داد سکون را از عالم ما گرفت و برای خلقت آن، نقطه آغاز متصور گردید زمان مطلق را که ا ز ازل تایم شده بود و قرار بود تا ابد تیک تاک کند را درهم شکست و سرعت‌ها را که فیزیک کلاسیک رها کرده بود سامان داد و درچارچوب سرعت نور مهار کرد فیزیک کوانتومی نیز با خود همانند نظریه نسبیت دیدگاههای جدیدی نسبت به عالم نه با مقیاس نسبیت بلکه در مقیاس بسیار کوچکتر (اتمی و زیر اتمی) ارائه نمود .ما که از دنیای کلان با فیزیک کلاسیک و نسبیت آگاهی رضایت بخشی کسب نمودیم تا قبل از پیدایش مکانیک کوانتومی تنها الکترون و هسته را می‌شناختیم آن هم در حد یک شناخت سطحی ویکسری روابط دست وپا شکسته که اوج آنها روابطی بود که بوهر فیزیکدان دانمارکی با زیرکی از تلفیق فیزیک کلاسیک با اصول موضوعه خود به آنها دست یافت گرچه این روابط طیف حاصل از اتم هیدروژن را به خوبی توجیه می‌کرد ولی عملا برای سایر اتم‌های سنگین‌تر ناکارآمد وبی‌استفاده بود.فیزیک کوانتومی با پیدایش خود سه بمب اتم بر سرعالم فرو ریخت دوتای آنهادر ژاپن و سومی بر تفکر فلسفی فیزیکدانان .برای فیزیکدانانی که صدها سال با جبر نیوتنی یا اصل علیت خوگرفته بودند و وقوع هر معلولی را به یک علت خاص ربط می‌دانند بسیار بغرنج بود که دست از این تفکر بردارند چرا که این تفکر بخوبی با وقایع دنیایی قابل مشاهده منطق بود.گردش زمین تنها معمول نیروی گرانشی است که خورشید برآن وارد می‌کند، انحراف نور ستارگان دور دست از یک مسیر مستقیم، تنها معلول انحنای فضا – زمان است.

    پدیده تداخل معلول رفتار موجی نور می‌باشد و دامنه این تفکر جبری گرچه این روابط طیف حاصل از اتم هیدروژن را به خوبی توجیه می‌کرد ولی عملا برای سایر اتم‌های سنگین‌تر ناکارآمد وبی‌استفاده بود.فیزیک کوانتومی با پیدایش خود سه بمب اتم بر سرعالم فرو ریخت دوتای آنهادر ژاپن و سومی بر تفکر فلسفی فیزیکدانان .برای فیزیکدانانی که صدها سال با جبر نیوتنی یا اصل علیت خوگرفته بودند و وقوع هر معلولی را به یک علت خاص ربط می‌دانند بسیار بغرنج بود که دست از این تفکر بردارند چرا که این تفکر بخوبی با وقایع دنیایی قابل مشاهده منطق بود.گردش زمین تنها معمول نیروی گرانشی است که خورشید برآن وارد می‌کند، انحراف نور ستارگان دور دست از یک مسیر مستقیم، تنها معلول انحنای فضا – زمان است.

    پدیده تداخل معلول رفتار موجی نور می‌باشد و دامنه این تفکر جبری به جائی رسید که لاپلاس ریاضیدان فرانسوی بیان نمود که حالت جهان معلول گذشته آن و علت آ‌ینده آن است.

    این تفکر به ما می‌گوید که با آگاهی از موقعیت کنونی زمین و خورشید نسبت بهم و سرعت چرخش زمین بدور خورشید می‌توان کسوف‌های آینده را دقیقا مشخص نمود حرکت سیارات وحتی ستارگان دنباله دار را با دقت فوق العاده تعیین کرد.

    بنابراین همه چیز از جبر نیوتنی یا اصل موجبیت یا علیت پیروی می کرد ولی به یکباره پیدایش فیزیک کوانتومی با اصل عدم قطعیتش همه چیز را بهم ریخت وسایه تردید و احتمال را بر دنیای زیر اتمی مسلط ساخت.غیر قابل پیش بینی بودن برخی از وقایع – تاثیر روش های اندازه‌گیری بر روی سیستمهای مورد آزمایش- ناتوانی مطلق دراندازه گیری همزمان متغیرها‌ی مکمل(چون تکانه و مکان ذرات یا خاصیت موجی و ذره‌ای فوتون) از جمله پیامدهای فیزیک کوانتومی بود.

    این فیزیک جدید به ما می‌‌گوید نمی‌توان با قطعیت مسیر یک ذره‌ای را بادانستن تمامی حالات کنونیش پیش‌بینی کرد، ما هرگز نمی‌توانیم بفهمیم در پدیده تداخل الکترون مورد نظر ما از کدام یک از دو شکاف دستگاه عبور کرده است.فیزیک کوانتومی همانند فیزیک کلاسیک و نسبیت این اجازه را به ما نمی‌دهد که با دانستن حالت کنونی یک سیستم با قطعیت از آینده آن صحبت کنیم.همه جا صحبت ازمیانگین‌ها و احتمال هاست و همین موضوع بود که اینشتین را وادار به بیان این جمله کرد : خدا هرگز تاس نمی‌اندازد ولی آیا طبیعت به راستی فرمانبردار مطلق خداست؟.

    آیا یک اتم اورانیوم هنگامی متلاشی می‌شود که از خدا فرمان بگیرد؟

    و یا یک فوتون هنگام رسیدن به سر دو راهی شکاف‌ها منتظر فرمان خدا می‌ایستد که از کدام یک از شکاف‌ها بگذرد و بهمین خاطر ما قادر به تعیین محل آن نیستیم؟

    یا اینکه طبیعت بعد از ساخته شدن توسط خدا رها شده است که ذرات آن هر گونه که دلشان بخواهند رفتار کنند این تفکر که نمی‌توان با قطعیت از رفتار آینده یک سیستم صحبت کرد و این اندازه‌گیری‌ها است که به پدیده‌ها رنگ واقعیت می‌بخشد به تفکر کپنها گی Copenhagen interpretation معروف است که بوهر سردمدار آن بود.این تعبیر از جهان اطراف ما به ما می‌گوید که تصور مکان و تکانه مشخص برای یک ذره همانند الکترون تا موقعیکه اندازه‌گیری نشده‌اند بی معناست در این اندازه گیری شی و دستگاه اندازهگیری توامان نتایج حاصل از اندازه‌‌گیری را مشخص می‌کنند.

    ولی آیا می‌توان پذیرفت که فرآیند اندازه‌گیری می‌تواند روی جهان تاثیر بگذارد آیا شلیک یک گلوله تا موقعی که گوشی صدای آن را نشنیده است(به عنوان دستگاه اندازه گیری) دارای صدا است آیا یک الکترون دارای بارالکتریکی است یا اینکه این دستگاه اندازه‌گیری است که برای الکترون باری مشخص در نظر می‌گیرد.

    کوانتوم فرآیند اندازه گیری را مختل کننده و تاثیرگذار فرض می‌کند تا جائیکه بوهر بانی تفکر کپنهاگی بیان می‌دارد که خواصی مانند ماهیت موجی یا ذره‌ای یک فوتون یا الکترون یا بار الکتریکی ، تکانه ، محل و سرعت یک ذره، تا هنگامی که اندازه‌گیری نشده‌اند وجود ندارد یا غیر واقعی هستند به عبارت کلی تر یک سیستم کوانتومی فاقد خواص است .اینشتین به واقعیت عینی معتقد بود، اینکه جهان فیزیکی مستقل از هر نوع فرآیند اندازه‌گیری است، و به این موضوع ایمان راسخ داشت.

    به عبارتی او تاثیر گذاری فرآیند اندازه گیری را بر پدیده‌های فیزیکی مردود می‌دانست و معتقد بود که ذرات زیر اتمی دارای وجودی مستقل از اندازه‌گیری هستند براستی آیا فیزیک کوانتوم آن گونه که اینشتین اعتقاد داشت ناقص است؟

    ولی نتایج تمام آزمایشات به خوبی با محاسبات فیزیک کوانتومی مطابقت دارند گرچه فیزیک کوانتومی از پیش بینی رفتار یک فوتون یا یک هسته اتم رادیواکتیو به تنهایی عاجز است ولی به خوبی رفتار گروهی این ذرات را پیش بینی می‌کند.

    فیزیک کوانتومی نه تنها قادر به توصیف رفتار ذرات زیر اتمی است بلکه با تعمیم آن می‌‌توان رفتار اجرام ماکروسکوپی همانند یک توپ تنیس یا یک جسم قابل مشاهده دیگر را تعیین نمود و همین عامل موجب شده است تا فیزیکی کوانتومی را یک نظریه بنیادی که رفتار جهان را توصیف می کند در نظر بگیریم همانند فیزیک کلاسیک و نسبیت پیامدهای فلسفی این علم جدید را می‌توان به گردن بوهر انداخت.

    بوهر به جای تکمیل و رفع نواقص آن که از دید اینشتین و حامیان او EPR paradox مطرح می‌گردید با قاطعیت شروع به دفاع فلسفی از این ایده جدید نمود او پدیده تکمیل یا اصل مکملیت Principle of Complementarity را که مبتنی بر اصل عدم قطعیت‌هایزنبرگ بود را برای تاثیر اندازه گیری بر سیستم کوانتومی مطرح کرد.

    بر اساس این اصل، اندازه گیری خاصیتی از یک سیستم است و درهنگام اندازه گیری یک خاصیت از یک سیستم اطلاعات مادر مورد سایر خاص آن سیستم از بین می‌رود مثلا اگر بنا باشد خاصیت موجی نور را اندازه گیری کنیم اطلاعات ما در مورد خاصیت ذره ای آن به کلی از میان می رود.

    همچنین در تعبیر کپنهاگی واقعیت تا هنگامی که اندازه‌گیری نشود وجود ندارد بر همین اساس تصور بار و تکانه و...

    برای یک الکترون تا هنگامیکه این کمیت‌ها اندازه‌گیری نشوند بی‌معنا خواهد بود در سال گذشته یک جوان ایرانی بنام پرفسور شهریار صدیق افشار با انجام آزمایشی بربخشی از اصل مکملیت بوهر خط بطلان کشید و سلطۀ هشتاد سالۀ آ‎ن بر فیزیک کوانتومی را در معرض تزلزل و تباهی قرار داد تعریف ذره کلاسیک: ذره ای که ما با دانستن مکان و سرعت اولیه و با آگاهی در باب تعابیر فلسفی مکانیک کوانتومی سخن بسیار می توان گفت و هیچ متنی را نمی توان یافت که دربرگیرنده همه تفکرات پیرامون آن باشد.

    در این نوشتار نیز بنا به اصل گزینشی(selective) بودن مباحثی اینچنین, تنها به جنبه های محدودی از استنتاجات فلسفی مکانیک کوانتومی خواهیم پرداخت.

    با وجود آنکه غالب فیزیکدانان بر سر این مساله اتفاق نظر دارند که تئوری کوانتومی پاسخگوی امور است و نتایجی را پیشگویی می کند که مطابقت خوبی با تجربه دارند, اما همواره مباحثات فزاینده ای پیرامون بنیادهای فلسفی آن در جریان بوده است.

    یکی از رایج ترین تعابیر فلسفی مکانیک کوانتومی به تعبیر کپنهاگی (Copenhagen interpretation) شهرت دارد که از سوی مبدعان اصلی و پیشگامان مکانیک کوانتومی , بوهر(Bohr) و هایزنبرگ Heisenberg)) ارائه شده است.

    هایزنبرگ و بوهر با شور و حرارت از این تعبیر دفاع می کردند و سعی میکردند آن را به قلمروهایی جز فیزیک نیز تعمیم بدهند و از آن یک فلسفه تمام عیار برای حل و یا دست کم برای بیان درست همه مسائل و مشکلات فکری بسازند.

    مباحثات بوهر و اینشتین که از منتقدان اصلی این تعبیر بود بخش گیرایی از تاریخ فیزیک را تشکیل می دهد.

    اگرچه اینشتین سرانجام سازگاری منطقی نظریه و توافق آن با حقایق تجربی را پذیرفت اما هرگز قانع نشد که نظریه کوانتومی حقیقت غایی را نشان می دهد.

    جمله مشهور اینشتین که "خداوند در خلقت جهان طاس نمی ریزد" به وضوح به ناخشنودی وی از کنار گذاردن علیت(causality) و رویدادهای منفرد به سود یک تعبیر صرفاً آماری اشاره دارد.

    در این نوشتار, برخی ازاستدلالات مخالفان در رد تعبیر کپنهاگی را تحلیل خواهیم کرد.

    مهمترین دستاورد فلسفی تعبیر کپنهاگی را می توان طرد موجبیت دانست.

    به بیان دیگر غالب جستجوها برای یافتن نظریه ای بدیل, به علت ایراد به عدم موجبیت فلسفی آن صورت گرفته است تا ملاحظات دیگر.

    بنا بر نظر اینشتین "اعتقاد به دنیای خارجی مستقل از موضوع مورد درک, پایه تمامی علوم طبیعی است".

    ولی مکانیک کوانتومی بر هم کنشهای شیء و ناظر را بعنوان واقعیت غایی در نظر می گیرد و زبان روابط فرایندهای فیزیکی را به جای زبان کیفیت ها و خواص فیزیکی به کار می برد.

    مکانیک کوانتومی این برداشت را نیز مردود می کند که در پس جهان ادراک ما دنیای عینی نهفته ای وجود دارد که علیت(causality) بر آن حاکم است, و در عوض خود را به تشریح بین روابط بین ادراکات محدود میکند.

    گروهی از فیزیکدانان از اینکه خواص عینی(objective) به ذرات بنیادی نسبت داده نشود و تنها به جنبه های ذهنیت گرایانه (subjectivity)ناظر پدیده اکتفا شود اکراه دارند.

    هایزنبرگ در این باره می گوید: ما فرض نکرده ایم که نظریه کوانتومی بر خلاف نظریه کلاسیک اساساً یک نظریه آماری است, بدین معنا که که از داده های دقیق فقط می توان نتایج آماری بدست آورد...

    در فرمول بندی قانون علّى (causal law) , اگر حال را دقیقاً بدانیم آینده را نیزدقیقاً می توانیم پیشگویی کنیم, این استنتاج اشتباه نیست.

    بلکه صغری و کبری مسئله غلط است.

    بعنوان یک اصل ما نمیتوانیم از حال با تمام جزئیات آن مطلع باشیم.

    به واقع اصل عدم قطعیت (uncertainly principle) بوضوح اشاره به این مسئله دارد که در فراین مشاهده پدیده ها اخلال ناخواسته ای دخیل خواهد شد که به هیچ روی قابل حذف نیست.

    دوبروی که بهمراه دیوید بوهم از منتقدین تعبیر طرد موجبیت هایزنبرگ و بوهر می باشد در مقدمه کتاب "از علیت وشانس در فیزیک مدرن" (from causality and chance in modern physics)چنین می گوید: "با توجه به سطح پژوهشهای میکروفیزیکی کنونی روشهای اندازه گیری یقیناً تعین همزمان کلیه مقادیر لازم برای بدست آوردن تصویر ذرات نوع کلاسیک را مجاز نمی شمارند.

    و نیز اختلالهای ناشی از اندازه گیری که حذفشان غیر ممکن است, عموماً پیشگویی دقیق نتیجه حاصل از این اندازه گیری را مانع می شوند و تنها پیشگوییهای آماری را مجاز می دارند.

    بدین ترتیب بنا نهادن فرمولهای صرفاً احتمالاتی کاملاً موجه بود.

    ولی اکثریت آنان اغلب تحت تاثیر مفاهیم از پیش شکل گرفته ای که از آیین اثبات گرایانه (positivistic doctrine) ناشی می شد, تصور کرده اند که می توان از این نیز فراتر رفته و بیان داشت که خصلت غیر قطعی و نارسای دانشی که تجربه در مرحله امروزی اش درباره آنچه که در دنیای فیزیک میکروسکوپی واقعا روی می دهد در اختیار ما میگذارد نتیجه عدم موجبیت واقعی در حاتهای فیزیک و تحول آنهاست.

    چنین تعمیمی به هیچ وجه قابل توجیه به نظر نمی رسد.

    در آینده با درک عمیق تری از واقعیتهای فیزیکی شاید بتوان قوانین احتمال و فیزیک کوانتومی را به صورت نتایج آماری تکوین مقادیر کاملاً تعیین شده ای تعبیر کرد که در حال حاضراز نظر ما پنهانند.

    ممکن است وسایل پرقدرتی که اینک در شکستن ساختار هسته و آشکار ساختن ذرات جدید مورد استفاده قرار می دهیم روزی دانش بلاواسطه ای در اختیارمان قرار دهد که درحال حاضر در آن سطح عمیق تر فاقد آنیم." اما باید بگوییم این خطای اندازه گیری که دوبروی به نقص ابزار مشاهده منتسب می کند جزء قوانین اساسی نظریه کوانتومی است.

    محدودیتهای قید شده در اصل عدم قطعیت را نباید به معنای نقص دستگاه های اندازه گیری تلقی کرد و اینگونه استنتاج نمود که این محدودیت روزی با پیشرفت ابزار اندازه گیری تقلیل می یابد.

    این اصل قانون مهمی است که تا زمانی که قوانین نظریه کوانتوم به شکل کنونیشان پابرجا هستند، صادق خواهد بود.مشاهده نمودیم که دلیل اصلی مخالفت با تعبیر کپنهاگی به مسئله علیت و موجبیت (determinism) بازمیگردد.

    همیشه این سوال مطرح بوده که به راستی اعتبار درستی مسائل چیست؟

    مطابق کدام منطق, تعبیری معقول و منطقی به نظر می رسد و دیگری دور از ذهن و مغایر با عقل سلیم؟

    پاسخ به این سوال تا حدودی واضح است.

    منطق درستی مسائل بی تردید به معرفت ما نسبت به برهان علیت عمومی باز می گردد.

    علیت در ذهن انسان یک قانون عام و فراگیر است و حاصل تجربیات او از همه حوادث و وقایع زندگی.

    هر مساله منطق درستی برای ادراک دارد از این رو که با عقیده ما راجع به علیت همخوانی و انطباق دارد.

    به عبارتی هر چیزی که با علیت سازگاری داشته باشد منطقی به نظر می رسد و بالعکس.

    در واقع عقیده و استدلال ما در باب برهان علیت, اعتبار خود را از تجربه ما در دنیای ماکروسکوپی وام میگیرد.

    این مبحث اصالتا یک جدل معرفت شناختی (epistemology)است.

    زمانی که ناظر به مشاهده پدیده میپردازد و قوای معرفتی او فعال می شوند جهان خود را می نمایاند و در اینجاست که معرفت ناظراز جهان شکل می گیرد.

    کانت به طرح این پرسش پرداخت که اساس رابطه ای که آن را تصور (representation) مینامیم چیست و چگونه میان صورتی که من در ذهن دارم و واقعیتی که بیرون ازمن است امکان پذیر می شود؟

    ایمانوئل کانت در آنتینومی های کتاب نقد خرد محض(critic of pure reason) اشاره به این مطلب میکند که چگونه اطلاق مفاهیم و صور عقلی زمانی که محتوای تجربی برای آنها متصور نیست مانند حیطه امور متناهی به تناقض می انجامد و از این روست که چارچوب مشروع اطلاق مفاهیم تعیین می گردند.

    به اعتقاد کانت نمی توانیم برای اموری همچون علیت خصلتی در خود قائل شویم و آن را صفتی عینی از صفات ابژه ها بدانیم.

  • فهرست:

    ندارد.


    منبع:

    ندارد.
     

اصل عدم قطعيت هايزنبرگ در مکانيک کوانتومي بر اساس اصل عدم قطعيت نمي‌توان در مورد پديده‌ها با قطعيت کامل اظهار نظر کرد و نتيجه اندازه گيريها و آزمايشهاي مختلف بوسيله نظريه احتمال تعبير مي‌شود. نگاه ‌اجمالي در هر شاخه‌اي از علوم قواعد و قوانين

مقدمه مکانیک کوانتوم با ذرات زیر اتمی سروکار دارد که خواص و روابط آنها را مورد بررسی قرار می دهد. این ذرات مجموعه ای از کوانتومهای مختلف ماده، انرژی و نیروها هستند. فرمیونها سنگ بنای ماده را تشکیل می دهند و بوزونها موجب پیوند یا گسستگی فرمیونها می شوند. در هر صورت با هر عنوان و طبقه بندی که به این ذرات بنگریم، از یکدیگر جدا و گسسته اند. در حالیکه فضا-زمان کمیتی پیوسته است. آن ...

تصویر چهارده پس از نسبیت باید نگاهی به مکانیک کوانتومی بیاندازیم جایی که دانشمندان زیادی از جمله نیلز بور ، ولفانگ پائولی ، اروین شرودینگر ، انریکو فرمی و ورنر کارل هایزنبرگ . مکانیک کوانتوم حاصل کار چندین نفر بود ، در صورتی که نسبیت با تمام گستردگی خود حاصل ذهن خلاق اینشتن بود . اما گفتنی است که اینشتن یک انسان معمولی نبود . با بررسی هایی که بر روی مغز او انجام شده است مشخص شده ...

بخش اول استیون ویلیام هاوکینگ استاد کرسی لوکاشین در 29 اوریل 1980 در سالن کنفرانس کوکرافت در کمبریج انگلستان جایی که عرصه بالیدن تامسون و راترفورد بود، دانشمندان و مقامات دانشگاه روی صندلی‌های ردیف‌شده بر کف شیب‌دار سالن که مقابل دیواری پوشیده از وایت‌برد و پرده اسلاید بود، گرد‌هم آمده بودند. این جلسه برای وضع اولین خطابه یک پروفسور جدید کرسی لوکاشین(Lucasian) ریاضی برقرار شده ...

مقدمه : بشر به مدد تعقل و انديشه است که توانسته طبيعت چموش را رام خود کند، و فرهنگ و تمدن را رنگ و جلا ببخشد. مگر نه اينکه فرهنگ از انگيختگي و پويايي ارتباط دوره به دوره ي انسان و طبيعت، انسان و انسان، انسان و ابزار، انسان و جامعه و زبان معنا ي

فصل اول بررسی ماهیت نور و ارتباط آن با پدیده لیزر 1-1- ماهیت نور یونانی ها اولین کسانی هستند که کوشیدند طبیعت نور و چگونگی دیدن را توضیح دهند، بعد از آن، ظهور علوم تجربی دو نظریه مترادف را به ارمغان آورد. یکی از آنها نطریه ذره‌ای نیوتن بود که نور را متشکل از باریکه‌ای از ذرات دانسته که این ذرات تابع قوانین حرکت می‌باشند. نظریه دیگر نظریه موجی هوک و هویگنس است که طبیعت موجی را ...

مقدمه : شیمی در یک نگاه شیمی مطالعهٔ ساختار، خواص، ترکیبات، و تغییر شکل مواد است. این علم مربوط می‌شود به عناصر شیمیایی و ترکیبات شیمیایی که شامل اتمها، مولکولها، و کنش و واکنش میان آنهاست. جدول تناوبی و فهرست ترکیبات را هم مشاهده کنید. واژه شیمی خود داستان درازی دارد.ریشه این نام در واژه کیمیاست. خاستگاه واژه کیمیا را برخی از یونانی دانسته‌اند و چیستی کار کیمیاگری دگرساختن مس ...

مقدمه از اوائل قرن بیستم دو نظریه ی بزرگ نسبیت و مکانیک کوانتوم، برای پاسخگویی به مشکلاتی که فیزیک کلاسیک با آنها دست بگریبان بود، پا به عرصه وجود نهادند. جالب این است که هر دو نظریه تقریباً همزمان مطرح شدند و سیر تکاملی خود را طی کردند. نخست نسبیت خاص در سال 1905 تنها در محدوده ی دستگاه های لخت بکار گرفته شد و در سال 1915 تحت عنوان نسبیت عام به دستگاه های شتابدار تسری یافت. ...

«اقرا بسم ربک الذي خلق» بخوان به نام پروردگارت که تو را آفريد. خدايا اولين سخن تو با پيامبرت خواندن بود. توخير بندهات را در دانشمند بودن او ميداني. پس خدايا شناخت علوم بر ما آسان ساز. يعني شناختن و دانستن چيزي همان طور که هست واين از صف

شيمي در يک نگاه شيمي مطالعه? ساختار، خواص، ترکيبات، و تغيير شکل مواد است. اين علم مربوط مي‌شود به عناصر شيميايي و ترکيبات شيميايي که شامل اتمها، مولکولها، و کنش و واکنش ميان آنهاست. جدول تناوبي و فهرست ترکيبات را هم مشاهده کنيد. واژه شيمي خود داستان

ثبت سفارش
تعداد
عنوان محصول