مقدمه قسمت اعظم انرژی الکتریکی مورد نیاز انسان در تمام کشورهای جهان ، توسط مراکز تولید مانند نیروگاههای بخاری ، آبی و هستهای تولید میشود.
این مراکز دارای توربینها و آلترناتیوهای سه فاز هستند و ولتاژی که بوسیله ژنراتورها تولید میشود، باید تا میزانی که مقرون به صرفه باشد جهت انتقال بالا برده شود.
گاهی چندین مرکز تولید بوسیله شبکهای به هم مرتبط میشوند تا انرژی الکتریکی مورد نیاز را بطور مداوم و به مقدار کافی در شهرها و نواحی مختلف توزیع کنند.
در محلهای توزیع برای اینکه ولتاژ قابل استفاده برای مصارف عمومی و کارخانجات باشد، باید ولتاژ پایین آورده شود.
این افزایش و کاهش ولتاژ توسط ترانسفورماتور انجام میشود.
بدیهی است توزیع انرژی بین تمام مصرف کنندههای یک شهر از مرکز توزیع اصلی امکانپذیر نیست و مستلزم هزینه و افت ولتاژ زیادی خواهد بود.
لذا هر مرکز اصلی به چندین مرکز یا پست کوچکتر (پستهای داخل شهری) و هر پست نیز به چندین محل توزیع کوچکتر (پست منطقهای) تقسیم میشود.
هر کدام از این مراکز به نوبه خود از ترانسهای توزیع و تبدیل ولتاژ استفاده میکنند.
بطور کلی در خانواده و توزیع انرژی الکتریکی ، ترانسفورماتورها از ارکان و اعضای اصلی هستند و اهمیت آنها کمتر از خطوط انتقال و یا مولدهای نیرو نیست.
خوشبختانه به دلیل وجود حداقل وسایل دینامیکی در آنها کمتر با مشکل و آسیب پذیری روبرو هستند.
مسلما این به آن معنی نیست که میتوان از توجه به حفاظتها و سرویس و نگهداری آنها غفلت کرد.
در این مقاله نخست مختصری از تئوری و تعاریفی از انواع ترانسفورماتورها بیان میشود، سپس نقش ترانسفورماتورها در شبکه تولید و توزیع نیرو و در نهایت شرحی در مورد سرویس و تعمیر ترانسها ارائه میشود.
تئوری و تعاریفی از ترانسفورماتورها ترانسفورماتورها به زبان ساده و شکل اولیه وسیلهای است که تشکیل شده از دو مجموعه سیم پیچ اولیه و ثانویه که در میدان مغناطیسی و اطراف ورقههایی از آهن مخصوص به نام هسته ترانسفورماتور قرار میگیرند.
مقرهها یا بوشینگها یا ایزولاتورها و بالاخره ظرف یا محفظه ترانسفورماتور.
کار ترانسفورماتورها بر اساس انتقال انرژی الکتریکی از سیستمی با یک ولتاژ و جریان معین به سیستم دیگری با ولتاژ و جریان دیگر است.
به عبارت دیگر ترانسفورماتور دستگاهی است استاتیکی که در یک میدان مغناطیسی جریان و فشار الکتریکی را بین دو سیم پیچ یا بیشتر با همان فرکانس و تغییر اندازه یکسان منتقل میکند.
انواع ترانسفورماتور ها سازندگان و استانداردها در کشورهای مختلف هر یک به نحوی ترانسفورماتورها را تقسیم بندی کرده و تعاریفی برای درجه بندی آنها ارائه دادهاند.
برخی ترانسها را بنا بر موارد و ترتیب بهره برداری آنها متفاوت شناختهاند، مانند ترانسهای انتقال قدرت ، اتو ترانس و یا ترانسهای تقویتی و گروهی از ترانسها را به غیر از ترانسفورماتور اینسترومنتی(ترانس جریان و ولتاژ) ، ترانس قدرت مینامند و اصطلاحا ترانس قدرت را آنهایی میدانند که در سمت ثانویه آنها فشار الکتریکی تولید میشود.
این نوع تقسیم بندی در عمل دامنه وسیعی را در بر میگیرد که در یک طرف آن ترانسفورماتورهای کوچک و قابل حمل با ولتاژ ضعیف برای لامپهای دستی و مشابه آن قرار میگیرند و طرف دیگر شامل ترانسهای خیلی بزرگ برای تبدیل ولتاژ خروجی ژنراتور به ولتاژ شبکه و خطوط انتقال نیرو است.
در بین این دو اندازه (حد متوسط) ترانسهای توزیع و یا انتقال در مؤسسات الکتریکی و ترانسهای تبدیل به ولتاژهای استاندارد قرار دارند.
ترانسها اغلب به صورت هستهای یا جداری طراحی میشوند.
در نوع هستهای در هر یک از سیم پیچها شامل نیمی از سیم پیچ فشار ضعیف و نیمی از سیم پیچ فشار قوی هستند و هر کدام روی یک بازوی هستهای قرار دارند.
در نوع جداری ، سیم پیچها روی یک هسته پیچیده شدهاند و نصف مدار فلزی مغناطیسی از یک طرف و نصف دیگر از طرف هسته بسته میشود.
در اکثر اوقات نوع جداری برای ولتاژ ضعیف و خروجی بزرگ و نوع هستهای برای ولتاژ قوی و خروجی کوچک بکار میروند (بصورت سه فاز یا یک فاز).
ترانس های تغذیه و قدرت مانند ترانس اصلی نیروگاه ترانس توزیع و اتو ترانسفورماتور ، ترانسفورماتورهای قدرت معمولا سه فاز هستند، اما گاهی ممکن است در قدرتهای بالا به دلیل حجم و وزن زیاد و مشکل حمل و نقل از سه عدد ترانس تک فاز استفاده کنند.
ترانسهای صنعتی مانند ترانسهای جوشکاری ، ترانسهای راه اندازی و ترانسهای مبدل ترانس برای سیستم های کشش و جذب که در راه آهن و قطارهای الکتریکی بکار میرود.
ترانسهای مخصوص آزمایش ، اندازه گیری ، حفاظت مصارف الکتریکی و غیره.
سازندگان و استانداردها در کشورهای مختلف هر یک به نحوی ترانسفورماتورها را تقسیم بندی کرده و تعاریفی برای درجه بندی آنها ارائه دادهاند.
ترانسهای تغذیه و قدرت مانند ترانس اصلی نیروگاه ترانس توزیع و اتو ترانسفورماتور ، ترانسفورماتورهای قدرت معمولا سه فاز هستند، اما گاهی ممکن است در قدرتهای بالا به دلیل حجم و وزن زیاد و مشکل حمل و نقل از سه عدد ترانس تک فاز استفاده کنند.
ترانسهای صنعتی مانند ترانسهای جوشکاری ، ترانسهای راه اندازی و ترانسهای مبدل ترانس برای سیستمهای کشش و جذب که در راه آهن و قطارهای الکتریکی بکار میرود.
اضافه ولتاژهای رزونانس در ترانسفورماتورهای توزیع نتیجه طبیعی استفاده صنایع از ترانسفورماتورهای توزیع با ظرفیتهای بالاتر، افزایش احتمال بروز اضافه ولتاژها در وضعیتهای مختلف روزانه است .
برای تعیین پارامترهای سیستم که می توانند باعث ایجاد اضافه ولتاژهای فرورزونانس شدید گردند، آزمایشهای کاملی توسط موسسه DSTAR انجام گرفته است .
آزمایشات مذکور بر روی تعدادی ترانسفورماتور توزیع و تحت شرایط کار واقعی انجام شده است .
در طول این آزمایشات، صدها بار عملیات کلیدزنی بر روی ترانسفورماتورهای توزیع با ولتاژهای متفاوت و با سیم پیچ ستاره زمین شده و اولیه مثلث انجام گردید.
این پروژه بطور کلی ثابت کرد که در ترانسفورماتورهای با ظرفیت بالا که امروزه توسط صنایع مختلف مورد استفاده قرار می گیرند، احتمال ایجاد اضافه ولتاژ فرورزونانسی بیشتر از ترانسفورماتورهای دهه گذشته می باشد.
بطور نمونه ، در آزمایشات انجام گرفته شده توسط DSTAR بر روی یک ترانسفورماتور معمولی با هسته سیلیکون – فولاد با ظرفیت 225 KVA و ولتاژ 25 KV با اتصال Y –Y ، یک اضافه ولتاژ با پیک 2.35 برابر پیک نامی ترانسفورماتور اندازه گیری شده است .
تحقیقات DSTAR ، برخی نظرات موجود در مورد اثرات پدیده اضافه ولتاژ را رد کرد.
برای مثال بجای جریان تحریک هسته تلفات هسته ترانسفورماتور بهترین مشخصه برای شناسایی پدیده اضافه ولتاژ در ترانسفورماتور می باشد.
نتایج تحقیقات انجام گرفته توسط این مرکز ، اخیرا" بعنوان مبحث جدید و با ارزشی از سوی IEEE منتشر شده است .
پروژه تحقیقاتی دیگری توسط موسسه DSTAR جهت تعیین تأثیر نصب برقگیر اکسید روی بر روی اضافه ولتاژهای فرورزونانس انجام گرفته است.
این تحقیقات نشان داد که وقوع اضافه ولتاژهای فرورزونانس باعث خرابی سریع برقگیر GAPLESS نخواهد شد.
بدلیل وجود امپدانس خیلی بزرگ مدار فرورزونانس گرم شدن برقگیر به آهستگی صورت میگیرد.
همچنین این تحقیقات نشان داد که برقگیرها می توانند بعنوان عامل موثری در کنترل اضافه ولتاژها در شرایط گوناگون باشند.
دستورالعملهای مختلفی برای کاربرد برقگیرهای مختلف با توجه به شرایط بهره برداری وجود دارد که بیان می کند هر برقگیر چند دقیقه می تواند اضافه ولتاژ فرورزونانس را تحمل کند.
این اضافه ولتاژ در زمان کلیدزنی ( سوئیچینگ ) ترانسفورماتورها رخ می دهد.
بانکهای ستاره – مثلث کلیدزنی بانکهای ترانسفورماتور سه فاز هوایی با سیم پیچی Y – ∆ بصورت فاز به فاز می تواند سبب ایجاد مشکلات اضافه ولتاژ و خرابی ترانسفورماتورها یا برقگیرها گردد.
این موضوع در تحقیقات DSTAR بررسی گردید و نتایج بدست آمده مطالب مفیدی را در مورد کلیدزنی ، حفاظت اضافه ولتاژها و قابلیت برقگیرها در رفع این اضافه ولتاژها ارائه نمود.
نتایج تحقیقات مذکور همچنین گونه دیگری از پدیده اضافه ولتاژ را که قبلا" گزارش نشده بود، کشف و معرفی نمود.
این اضافه ولتاژ که دامنه زیادی دارد یک علت روشن برای خرابی خیلی از ترانسفورماتورها در این زمینه می باشد.
یک نمونه از این نوع اضافه ولتاژ درشکل شماره (1) نشان داده شده است .
امواج طرف ثانویه ترانسفورماتورهای تک فاز توزیع با سیم پیچی از نوع طراحیnon – interlaced به همان اندازه که ممکن است بواسطه امواج صاعقه وارد شده از طریق نقطه خنثی در ثانویه صدمه ببینند به همان قدر نیز ممکن است از طریق امواج طرف اولیه در معرض خطر باشند.
همانطور که در شکل ( 2 ) دیده می شود ولتاژ القاء شده در سیم پیچی طرف اولیه در مجموع کم است ولی تنش های لایه به لایه در میان سیم پیچی های ترانسفورماتور زیاد اتفاق می افتد.
آزمایشات متعدد DSTAR و بررسی های تحلیلی انجام شده دستورالعمل و راهنمائیهائی را برای حداقل نمودن ریسک خرابی ترانسفورماتور در مواجه با این پدیده، تهیه نموده است.