مقدمه کلی: در این مقاله به برسی کلی نیروگاه های حرارتی و نیروگاه های اتمی میپردازیم و اشارهای به نیروگاس سیکل ترکیبی شده است نیروگاه حرارتی مقدمه نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار میرود که در عمل پرههای توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در میآورد.
در نتیجه ژنراتور انرژی الکتریکی تولید میکند.
نیروگاه حرارتی به مقدار زیادی آب نیاز دارد.
در نتیجه در محلهایی که آب به فراوانی یافت میشود، ترجیحا از این نوع نیروگاه استفاده میشود.
چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم میتوان تهیه کرد.
سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.
مشخصات فنی نیروگاه سوخت سوخت اصلی نیروگاه ، سوخت سنگین (مازوت) میباشد که توسط تانکرها حمل و از طریق ایستگاه تخلیه سوخت در سه مخزن 33000 متر مکعبی ذخیره میگردد.
سوخت راه اندازی ، سوخت سبک (گازوئیل) است که در یک مخزن 430 متر مکعبی نگهداری میشود.
آب آب مصرفی نیروگاه ، جهت تولید بخار و مصرف برج خنک کن و سیستم آتش نشانی ، از طریق چاه عمیق تامین میگردد.
سیستم خنک کن برج خنک کن نیروگاه از نوع تر میباشد و 18 عدد فن (خنک کن) دارد که هر یک دارای الکتروموتوری به قدرت 132kw و سرعت سرعت 141RPM میباشد و بوسیله دو عدد پمپ توسط لولهای به قطر 5.2 متر آب مورد نیاز خنک کن تامین میگردد.
دمای آب برگشتی در برج خنک کن 29.6 درجه سانتیگراد و دمای آب خروجی از برج 21.6 درجه سانتیگراد میباشد.
برج خنک کننده : در گزینش صحیح دستگاه خنک کننده آب متناسب با مقتضیات یک پروژه معین باید چند عامل اصلی را لحاظ کرد توان خنک کنندگی , مسائل اقتصادی , سرویسهای مورد نیاز و شرایط طبیعی و .
.
این عوامل اغلب به هم وابستگی متقابل دارنداما هر یک بایستی جداگانه مورد بررسی قرار گیرند از آنجا که ممکن است انواع زیادی از دستگاهها توانایی تامین مقصود را داشته باشند عواملی همچون ابعاد دستگاه , مساحت محل نصب , حجم هوای جریانی , میزان مصرف انرژی فن و پمپ , موارد بکار رفته در ساخت دستگاه , سهولت یافتن دستگاه در بازار بر انتخاب نهایی تاثیر گذار خواهد بود.
برجهای خنک کن در اندازه های مختلف برای دفع حرارت از یک تا چند تن تبرید ساخته می شوند, برجهای بزرگ برای کاربردهای معین ساخته می شوند و معمولا از چندین سلول تشکیل می شوند که هر یک اجزای خاص خود را دارند.
محل نصب : اگر بتوان برج خنک کن را در فضای باز با جریان هوای آزاد قرار داد در حصول یک بازده مناسب از برج مشکلی وجود نخواهد داشت اما چنانچه قرار باشد برج در داخل ساختمان و محصور بین دیوارها نصب شود موارد زیر بایستی مورد توجه قرار گیرد : 1) باید فضای کافی و بدون مانع مزاحم در اطراف برج وجود داشته باشد تا هوای لازم به برج برسد 2) هوای گرم خروجی از برج باید به گونه ای تخلیه شود که امکان بازگشت و گردش مجدد آن به برج وجود نداشته باشد زیرا گردش مجدد چنین هوایی در برج دمای مرطوب هوای ورودی به برج را افزایش می دهد و باعث گرم ماندن آب در خروج از برج می شود گردش مجدد هوا به داخل برج هنگامی مورد توجه قرار می گیرد که چند برج در مجاورت هم باشند تعیین محل نصب برج به عوامل دیگری هم بستگی دارد از قبیل استحکام محل نصب , تجهیزات اضافی برای تقویت آن , هزینه فراهم کردن تجهیزات اضافی برای برج و مسائل مربوط به معماری ساختمان و … لوله کشی : سیستم لوله کشی برج خنک کن بایستی به گونه ای طراحی شود که امکان انبساط و انقباض بین لوله ها فراهم باشد و چنانچه برج بیش از یک اتصال ورودی باشد باید جهت متعادل کردن جریان آب به هر یک از سلولهای برج شیر متعادل کننده نصب شود و چنانچه لازم باشو یکی از سلولهای برج جهت تامیرات از مدار خارج شود باید دارای شیر مسدود کننده جریان باشد اگر دو یا چند برج بصورت موازی نصب شده باشند باید از یک لوله مشترک بین دو تشت برج جهت متعادل کردن آب داخل برج استفاده شود به منظور ممانعت از سرریز آب داخل برج هنگام توقف کار تمامی مبدلها بایستی پایین تر از سطح آب برج قرار داشته باشند .
کنترل ظرفیت : بیشتر برجهای خنک کن در معرض تغییرات قابل توجه دمای مرطوب هوا و بار در طول فصل گرم می باشند بدین لحاظ ممکن است جهت ابقای شرایط تجویز شده برای کارکرد مطلوب برج بعضی از روشهای کنترل ظرفیت به کار گرفته شود .
ساده ترین روش کنترل ظرفیت برجها تغییر سرعت فن می باشد که اغلب در برجهای چند سلولی به کار می رود با موتورهای دور متغییر میتوان این کار را انجام داد روش دیگر در کنترل طرفیت استفاده از دمپر تنظیم کننده در دهانه خروجی فن سانتریفوژ می باشد روش دیگر بای پاس کردن آب می باشد .
کار زمستانی برج خنک کننده : اگر قرار باشد برج در دمای زیر صفر درجه کار کند باید موارد زیر بحث شود : 1) گردش باز آب در برج خنک کن 2) گردش بسته آب در یک سرد کننده تبخیری مدار بسته 3}آب تشت در برج خنک کن سیستم تصفیه آب سیستم تصفیه آب جهت برج خنک کن آب لازم جهت برج خنک کن بایستی فاقد املاحی باشد که سریعا در لولههای کندانسور رسوب میکنند (از قبیل بیکربناتها).
این املاح با افزودن کلرورفریک ، آب آهک و آلومینات سدیم گرفته میشود و سپس رسوبات جمع شده توسط یک جاروب جمع کننده به بیرون منتقل میشوند.
به این آب که بدون سختی بی کربنات باشد، آب نرم میگویند.
آب نرم وارد دو استخر ذخیره شده و از آنجا توسط پمپهایی جهت تامین کمبود آب به برج خنک کن فرستاده میشود.
برای از بین بردن خزه و جلبک در این استخر ، سیستم تزریق کلر طراحی شده است.
سیستم تصفیه آب جهت تولید بخار چون آب مورد نیاز برای تولید بخار و جبران کمبود سیکل آب و بخار بایستی کیفیت بسیار بالایی داشته باشد، لذا برای این منظور از یک سیستم مشترک برای هر دو واحد استفاده میشود.
بعد از اینکه مقداری از سختی آب گرفته شد، وارد سه دستگاه فیلتر شنی میشود، سپس به مخزن ذخیره وارد و از آنجا توسط سه عدد پمپ به طرف فیلتر کربنی فعال فرستاده میشود، تا کلر موجود در آب بوسیله زغال فعال جذب شود.
بعد از این فیلتر یک مبدل حرارتی در نظر گرفته شده که دمای آب را در 25 درجه سانتیگراد ثابت نگه میدارد.
سپس این آب وارد دو دستگاه فیلتر 5 میکرونی شده و ذراتی که قطر آنها بیشتر از 5 میکرون میباشند، توسط این فیلترها جذب و وارد دو دستگاه ریورس اسمز میگردد.
در این دستگاه 90% املاح محلول در آب گرفته میشود.
آب پس از این مرحله وارد مخزن زیرزمینی میگردد.
سپس توسط سه پمپ به فیلترهای کاتیونی و آنیونی وارد شده و پس از تنظیم PH و کنترل از نظر شیمیایی به مخازن ذخیره آب وارد و مورد استفاده قرار میگیرد.
ترانسفورمرها و تغذیه داخلی نیروگاه ترانس اصلی (Main Ttansformer):این ترانس به صورت سه تک فاز با ظرفیت هر کدام 150 مگا ولت آمپر و فرکانس 50 هرتز و امپرانس ولتاژ 14.2 درصد به عنوان Step Up Tranformer ، جهت بالا بردن ولتاژ خروجی ژنراتور از 20 کیلو ولت تا 230 کیلو ولت بکار رفته است.
در ضمن نسبت تبدیل ، 10.20%±247 کیلو ولت میباشد.
ترانس واحد (Unit Transformer):این ترانس با ظرفیت 35/22/22 مگا ولت آمپر و نسبت تبدیل 3/316/516%±20 و فرکانس 50 هرتز و امپدانس ولتاژ 8.5% و تپ چنجر Off- Loud ، ولتاژ 20 کیلو ولت خروجی ژنراتور را تبدیل به 6 کیلو ولت نموده و به منظور تامین مصارف داخلی نیروگاه در حین بهره برداری بکار میرود.
ترانس استارتینگ (Start up Trans): این ترانس به تعداد دو عدد ، به نامهای LTB و LTA و با ظرفیت 25/25/25 مگا ولت آمپر و نسبت تبدیل 10%±3/6/10%± کیلو ولت و فرکانس 50 هرتز و امپدانس 10% و تپ چنجر On Lead ، ولتاژ 230 کیلو ولت شبکه را تبدیل به 6 کیلو ولت نموده و شینهها را طبق شکل شماتیک ضمیمه تغذیه مینماید.
ترانس تغذیه (Auxiliary Trans): ترانس تغذیه در ظرفیتهای مختلف 630/1600/2500 کیلو ولت آمپر ، ولتاژ 6 کیلو ولت را تبدیل به 400 ولت مینماید که جهت تامین مصارف داخلی فشار ضعیف بکار میرود.
سیستم آتش نشانی آب: کلیه قسمتهای نیروگاه (ساختمان شیمی ، ماشین خانه ، بویلر ، کارگاه ، انبار و ...) و محوطه مجهز به سیستم آب آتش نشانی میباشند.
فوم: کلیه قسمتهای سوخت رسانی اعم از مخازن سوخت سبک و سنگین و ایستگاه تخلیه سوخت ، بویلر دیزل اضطراری و بویلر کمکی مجهز به سیستم فوم میباشند.
گاز CO2: کلیه سیستمهای الکتریکی از قبیل ساختمان الکتریکی و...
توسط گاز CO2 حفاظت میگردد.
برق هسته ای انرژی هسته ای از عمده ترین مباحث علوم و تکنولوژی هسته ای است و هم اکنون نقش عمده ای را در تأمین انرژی کشورهای مختلف خصوصا کشورهای پیشرفته دارد .
اهمیت انرژی و منابع مختلف تهیه آن، در حال حاضر جزء رویکردهای اصلی دولتها قرار دارد.
به عبارت بهتر، از مسائل مهم هر کشور در جهت توسعه اقتصادی و اجتماعی بررسی ، اصلاح و استفاده بهینه از منابع موجود انرژی در آن کشور است.
امروزه بحرانهای سیاسی و اقتصادی و مسائلی نظیر محدودیت ذخایر فسیلی، نگرانیهای زیست محیطی، ازدیاد جمعیت، رشد اقتصادی ، همگی مباحث جهان شمولی هستند که با گستردگی تمام فکر اندیشمندان را در یافتن راهکارهای مناسب در حل معظلات انرژی در جهان به خود مشغول داشته اند.
در حال حاضر اغلب ممالک جهان به نقش و اهمیت منابع مختلف انرژی در تأمین نیازهای حال و آینده پی برده و سرمایه گذاریها و تحقیقات وسیعی را در جهت سیاستگذاری، استراتژی و برنامه های زیربنایی و اصولی انجام می دهند .
هم اکنون تدوین استراتژی که مرکب از بررسی تمامی پارامترهای تأثیر گذار در انرژی و تعیین راهکارهای مناسب جهت تمیزتر و کاراترنمودن انرژی و الگوی بهینه مصرف آن می باشد، در رأس برنامه های زیربنایی اکثر کشورهای جهان قرار دارد.
در میان حاملهای مختلف انرژی،انرژی هسته ای جایگاه ویژه ای دارد.
هم اکنون بیش از 430 نیروگاه هسته ای در جهان فعال می باشند و انرژی برخی کشورها مانند فرانسه عمدتا از برق هسته ای تأمین می شود.
جمهوری اسلامی ایران بیش از سه دهه است که تحقیقات متنوعی را در زمینه های مختلف علوم و تکنولوژی هسته ای انجام داده و براساس استراتژی خود، مصمم به ایجاد نیروگاههای هسته ای به ظرفیت کل 6000 مگاوات تا سال 1400 هجری شمسی می باشد.
در این زمینه، جمهوری اسلامی ایران در نشست گذشته آژانس بین المللی انرژی اتمی، تمایل خود را نسبت به همکاری تمامی کشورهای جهان جهت ایجاد این نیروگاهها و تهیه سوخت مربوطه رسما اعلام نموده است.
کاربردهای علوم و تکنولوژی هسته ای .
وقتی صحبت از انرژی اتمی به میان می آید، اغلب مردم ابر قارچ مانند حاصل از انفجارات اتمی و یا راکتورهای اتمی برای تولید برق را در ذهن خود مجسم می کنند و کمتر کسی را می توان یافت که بداند چگونه جنبه های دیگری از علوم هسته ای در طول نیم قرن گذشته زندگی روزمره او را دچار تحول نموده است.
اما حقیقت در این است که در طول این مدت در نتیجه تلاش پیگیر پژوهشگران و مهندسین هسته ای، این تکنولوژی نقش مهمی را در ارتقاء سطح زندگی مردم، رشد صنعت و کشاورزی و ارائه خدمات پزشکی ایفاء نموده است.
موارد زیر از مهمترین استفاده های صلح آمیز از علوم و تکنولوژی هسته ای می باشند:استفاده از انرژی حاصل از فرآیند شکافت هسته اورانیوم یا پلوتونیوم در راکتور های اتمی جهت تولید برق و یا شیرین کردن آب دریاها.استفاده از رادیوایزوتوپها در پزشکی، صنعت و کشاورزی .
موارد زیر از مهمترین استفاده های صلح آمیز از علوم و تکنولوژی هسته ای می باشند:استفاده از انرژی حاصل از فرآیند شکافت هسته اورانیوم یا پلوتونیوم در راکتورهای اتمی جهت تولید برق و یا شیرین کردن آب دریاها.استفاده از رادیوایزوتوپها در پزشکی، صنعت و کشاورزی استفاده از پرتوهای ناشی از فرآیندهای هسته ای در پزشکی، صنعت و کشاورزی از مهمترین منابع استفاده صلح آمیز از انرژی اتمی، ساخت راکتورهای هسته ای جهت تولید برق می باشدرآکتورهای هسته ای طبیعی در طبیعت هم میتوان نشانه هایی از رآکتور هسته ای پیدا کرد، البته به شرطی که تمام عوامل مورد نیاز به طور طبیعی در کنار هم قرار گرفته باشند.
تنها نمونه شناخته شده یک رآکتور هسته ای طبیعی دو میلیارد سال پیش در منطقه اوکلو در کشور گابون ( قاره آفریقا ) فعالیتش را آغاز کرده است.
البته دیگر چنین رآکتورهایی روی زمین شکل نمی گیرند، زیرا واپاشی رادیواکتیو این مواد ( به خصوص U-235 ) در این زمان طولانی 5/4 میلیارد ساله ( سن زمین )، فراوانی U-235 را در منابع طبیعی این رآکتورها بسیار کاهش داده است، به طوری که مقدار آن به پایین تر از حد مورد نیاز آغاز یک واکنش زنجیره ای رسیده است.
این رآکتورهای طبیعی زمانی شکل گرفتند که معادن غنی از اورانیوم به تدریج از آب زیرزمینی یا سطحی پر شدند.
این آب به صورت کند کننده عمل کرد و واکنش های زنجیره ای شدیدی به وقوع پیوست.
با افزایش دما، آب کند کننده بخار میشد و رآکتور خاموش شد.
پس از مدتی، این بخارها به مایع تبدیل میشدند و دوباره رآکتور به راه میافتاد.
این سیستم خودکار و بسته، یک رآکتور را کنترل میکرد و برای صدها هزار سال، این رآکتور را فعال نگاه میداشت.
مطالعه و بررسی این رآکتورهای هسته ای طبیعی بسیار ارزشمند است، زیرا میتواند به تحلیل چگونگی حرکت مواد رادیواکتیو در پوسته زمین کمک کند.
اگر زمین شناسان بتوانند را از این حرکتها را شناسایی کنند، میتوانند راه حل های جدیدی برای دفن زباله های هسته ای پیدا کنند تا روزی خدای ناکرده، این ضایعات خطرناک به منابع آب سطح زمین نشت نکنند و فاجعه ای بشری به بار نیاورند.
غنی سازی با دستگاه سانتریفیوژ سانتریفیوژ دستگاهی است که برای جدا سازی مواد از یکدیگر بر اساس وزن آنها استفاده میشود.
این دستگاه مواد را با سرعت زیاد حول یک محور به گردش در میآورد و مواد متناسب با وزنی که دارند از محور فاصله میگیرند.
در واقع در این روش برای جدا سازی مواد از یکدیگر از شتاب ناشی از نیروی گریز از مرکز استفاده میگردد، کاربرد عمومی این دستگاه برای جداسازی مایع از مایع و یا مایع از جامد است.
سانتریفیوژهایی که برای غنی سازی اورانیوم استفاده میشود حالت خاصی دارند که برای گاز تهیه شدهاند که به آنها Hyper-Centrifuge گفته میشود.
پیش از آنکه دانشمندان از این روش برای غنی سازی اورانیوم استفاده کنند از تکنولوژی خاصی بنام Gaseous Diffusion به معنی پخش و توزیع گازی استفاده میکردند.
غنی سازی با دیفوزیون گازی Gaseous Diffusion گراهان در سال 1864 پدیدهای را کشف کرد که در آن سرعت متوسط مولکولهای گاز با معکوس جرم مولکولی گاز متناسب بود.
از این پدیده که به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده میکنند.
در عمل اورانیوم هگزا فلوراید طبیعی گازی شکل را از ستونهایی که جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور میدهند.
سوراخهای موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود 2.5 آنگسترم (7-25x10 سانتیمتر) باشد.
ضریب جداسازی متناسب با اختلاف جرم مولکولها است.
روش غنی سازی اورانیوم تقریبا مطابق همین اصولی است که در اینجا گفته شد.
با وجود این میتوان به خوبی حدس زد که پرخرج ترین مرحله تهیه سوخت اتمی همین مرحله غنی سازی ایزوتوپها است، زیرا از هر هزاران کیلو سنگ معدن اورانیوم 140 کیلوگرم اورانیوم طبیعی بدست میآید که فقط یک کیلوگرم 235U خالص در آن وجود دارد.
Gaseous Diffusion از جمله تکنولوژیهایی بود که ایالات متحده طی جنگ جهانی دوم در پروژهای بنام منهتن (Manhattan) برای ساخت بمب هستهای ، با کمک انگلیس و کانادا به آن دست پیدا کرد.
در این روش با تکرار استفاده از این صفحات فیلتر مانند ، بصورت آبشاری (Cascade) ، میزان 235U را به مقدار دلخواه بالا میبردند.
این روش اولین راهکارهای صنعتی برای غنی سازی اورانیوم بود که کابرد عملی پیدا کرد.
نمونهای از سانتریفیوژهای گازی آبشاری که برای غنی سازی اورانیوم از آنها استفاده میشود.
Hyper-Centrifuge اما در روش استفاده از سانتریفیوژ برای غنی سازی اورانیوم ، تعداد بسیار زیادی از این دستگاهها بصورت سری و موازی بکار میبرند تا با کمک آن بتوانند غلظت 235U را افزایش دهند.
گاز هگزافلوراید اورانیوم (UF6) در داخل سیلندرهای سانتریفیوژ تزریق میشود و با سرعت زیاد به گردش در آورده میگردد.
گردش سریع سیلندر ، نیروی گریز از مرکز بسیار قوی تولید میکند و طی آن مولکولهای سنگینتر (آنهایی که شامل ایزوتوپ 238U هستند) از مرکز محور گردش دورتر میگردند و برعکس آنها که مولکولهای سبکتری دارند (حاوی ایزوتوپ 235U ) بیشتر حول محور سانتریفیوژ قرار میگیرند.
در این هنگام با استفاده از روشهای خاص گازی که حول محور جمع شده است جمع آوری شده به مرحله دیگر یعنی دستگاه سانتریفیوژ بعدی هدایت میگردد.
میزان گاز هگزافلوراید اورانیوم شامل 235U که در این روش از یک واحد جداسازی بدست میآید به مراتب بیشتر از مقداری است که در روش قبلی (Gaseous Diffusion) بدست میآید، به همین علت است که امروزه در بیشتر نقاط جهان برای غنی سازی اورانیوم از این روش استفاده میکنند.
بزرگترین دستگاههای آبشاری سانتریفیوژ در کشورهایی مانند فرانسه ، آلمان ، انگلستان و چین در حال غنی سازی اورانیوم هستد.
این کشورها علاوه بر مصرف داخلی به صادرات اورانیوم غنی شده نیز میپردازند.
کشور ژاپن هم دارای دستگاههای بزرگ سانتریفیوژ است، اما تنها برای مصرف داخلی اورانیوم غنی شده تولید میکند.
غنی سازی اورانیم از طریق میدان مغناطیسی یکی از روشهای غنی سازی اورانیوم استفاده از میدان مغناطیسی بسیار قوی میباشد.
در این روش ابتدا اورانیوم هگزا فلوئورید را حرارت میدهند تا تبخیر شود.
از طریق تبخیر ، اتمهای اورانیوم و فلوئورید از هم تفکیک میشوند.
در این حالت ، اتمهای اورانیوم را به میدان مغناطیسی بسیار قوی هدایت میکنند.
میدان مغناطیسی بر هستههای باردار اورانیم نیرو وارد میکند ( این نیرو به نیروی لورنتس معروف میباشد) و اتمهای اورانیوم را از مسیر مستقیم خود منحرف میکند.
اما هستههای سنگین اورانیم (238U ) نسبت به هستههای سبکتر (235U ) انحراف کمتری دارند و درنتیجه از این طریق میتوان 235U را از اورانیوم طبیعی تفکیک کرد.
کاربردهای اورانیوم غنی شده شرایطی ایجاد کرده اند که نسبت 235U به 238U را به 5 درصد میرساند.
برای این کار و تخلیص کامل اورانیوم از سانتریفوژهای بسیار قوی استفاده میکنند.
برای ساختن نیروگاه اتمی ، اورانیوم طبیعی و یا اورانیوم غنی شده بین 1 تا 5 درصد کافی است.
برای تهیه بمب اتمی حداقل 5 تا 6 کیلوگرم 235U صد درصد خالص نیاز است.
در صنایع نظامی از این روش استفاده نمیشود و بمبهای اتمی را از 239Pu که سنتز و تخلیص شیمیایی آن بسیار سادهتر است تهیه میکنند.
نحوه تولید سوخت پلوتونیوم رادیو اکتیو این عنصر ناپایدار را در نیروگاههای بسیار قوی میسازند که تعداد نوترونهای موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز میکند.
عملا کلیه بمبهای اتمی موجود در زراد خانههای جهان از این عنصر درست میشود. روش ساخت این عنصر در داخل نیروگاههای هستهای به این صورت که ایزوتوپهای 238U شکست پذیر نیستند، ولی جاذب نوترون کم انرژی هستند.
تعدادی از نوترونهای حاصل از شکست 235U را جذب میکنند و تبدیل به 239U میشوند.
این ایزوتوپ از اورانیوم بسیار ناپایدار است و در کمتر از ده ساعت تمام اتمهای بوجود آمده تخریب میشوند.
در درون هسته پایدار 239U یکی از نوترونها خود به خود به پروتون و یک الکترون تبدیل میشود.
بنابراین تعداد پروتونها یکی اضافه شده و عنصر جدید را که 93 پروتون دارد نپتونیوم مینامند که این عنصر نیز ناپایدار است و یکی از نوترونهای آن خود به خود به پروتون تبدیل شده و در نتیجه به تعداد پروتونها یکی اضافه شده و عنصر جدید پلوتونیم را که 94 پروتون دارد ایجاد میکنند.
این کار حدودا در مدت یک هفته صورت میگیرد.
راکتور هسته ای وسیله ای است که در آن فرایند شکافت هسته ای بصورت کنترل شده انجام می گیرد.
در طی این فرایند انرژی زیاد آزاد می گردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از 1500 تن زغال سنگ بدست می آید.
هم اکنون در سراسر جهان، راکتورهای متعددی در حال کار وجود دارند که بسیاری از آنها برای تولید قدرت و به منظور تبدیل آن به انرژی الکتریکی، پاره ای برای راندن کشتیها و زیردریائیها، برخی برای تولید رادیو ایزوتوپوپها و تحقیقات علمی و گونه هایی نیز برای مقاصد آزمایشی و آموزشی مورد استفاده قرار می گیرند.
در راکتورهای هسته ای که برای نیروگاههای اتمی طراحی شده اند (راکتورهای قدرت)، اتمهای اورانیوم و پلوتونیم توسط نوترونها شکافته می شوند و انرژی آزاد شده گرمای لازم را برای تولید بخار ایجاد کرده و بخار حاصله برای چرخاندن توربینهای مولد برق بکار گرفته می شوند.
راکتورهای اتمی را معمولا برحسب خنک کننده، کند کننده، نوع و درجه غنای سوخت در آن طبقه بندی می کنند.
معروفترین راکتورهای اتمی، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده(2 تا 4 درصد اورانیوم 235 ) به عنوان سوخت استفاده می کنند.
این راکتورها عموما تحت عنوان راکتورهای آب سبک(LWR ) شناخته می شوند.
راکتورهای WWER,BWR,PWR از این دسته اند.
نوع دیگر، راکتورهایی هستند که از گاز به عنوان خنک کننده، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می کنند.
این راکتورها به گاز- گرافیت معروفند.
راکتورهای HTGR,AGR,GCR از این نوع می باشند.
راکتور PHWR راکتوری است که از آب سنگین به عنوان کندکننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده می کند.
نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار می باشد.
مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده می باشد) LWGR(راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می کند) از فراوانی کمتری برخوردار می باشند.
در حال حاضر، راکتورهای PWR و پس از آن به ترتیب PHWR,WWER, BWR فراوان ترین راکتورهای قدرت در حال کار جهان می باشند.به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت "وستینگهاوس" و به منظور استفاده در زیر دریائیها ساخته شد.
ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمیPWR را تشکیل داد.
سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید.
اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده، توسط شوروی و در ژوئن 1954در "آبنینسک" نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت، تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال 1956 در انگلستان آغاز گردید.
تا سال 1965 روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود اما طی دو دهه 1966 تا 1985 جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است.
این جهش طی سالهای 1972 تا 1976 که بطور متوسط هر سال 30 نیروگاه شروع به ساخت می کردند بسیار زیاد و قابل توجه است.
یک دلیل آن شوک نفتی اوایل دهه 1970 می باشد که کشورهای مختلف را برآن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هسته ای روی آورند.
پس از دوره جهش فوق یعنی از سال 1986 تاکنون روند ساخت نیروگاهها به شدت کاهش یافته بطوریکه بطور متوسط سالیانه 4 راکتور اتمی شروع به ساخت می شوند.
کشورهای مختلف در تولید برق هسته ای روند گوناگونی داشته اند.
به عنوان مثال کشور انگلستان که تا سال 1965 پیشرو در ساخت نیروگاه اتمی بود، پس از آن تاریخ، ساخت نیروگاه اتمی در این کشور کاهش یافت، اما برعکس در آمریکا به اوج خود رسید.
کشور آمریکا که تا اواخر دهه 1960 تنها 17 نیروگاه اتمی داشت در طول دهه های1970 و 1980 بیش از 90 نیروگاه اتمی دیگر ساخت.
این مسئله نشان دهنده افزایش شدید تقاضای انرژی در آمریکاست.
هزینه تولید برق هسته ای در مقایسه با تولید برق از منابع دیگر انرژی در امریکا کاملا قابل رقابت می باشد.
هم اکنون فرانسه با داشتن سهم 75 درصدی برق هسته ای از کل تولید برق خود درصدر کشورهای جهان قرار دارد.
پس از آن به ترتیب لیتوانی(73درصد)، بلژیک(57درصد)، بلغارستان و اسلواکی(47درصد) و سوئد (8/46درصد) می باشند.
آمریکا نیز حدود 20 درصد از تولید برق خود را به برق هسته ای اختصاص داده است.
گرچه ساخت نیروگاههای هسته ای و تولید برق هسته ای در جهان از رشد انفجاری اواخر دهه 1960 تا اواسط 1980 برخوردار نیست اما کشورهای مختلف همچنان درصدد تأمین انرژی مورد نیاز خود از طریق انرژی هسته ای می باشند.
طبق پیش بینی های به عمل آمده روند استفاده از برق هسته ای تا دهه های آینده همچنان روند صعودی خواهد داشت.
در این زمینه، منطقه آسیا و اروپای شرقی به ترتیب مناطق اصلی جهان در ساخت نیروگاه هسته ای خواهند بود.
در این راستا، ژاپن با ساخت نیروگاههای اتمی با ظرفیت بیش از 25000 مگا وات درصدر کشورها قرار دارد.
پس از آن چین، کره جنوبی، قزاقستان، رومانی، هند و روسیه جای دارند.
استفاده از انرژی هسته ای در کشورهای کانادا، آرژانتین، فرانسه، آلمان، آفریقای جنوبی، سوئیس و آمریکا تقریبا روند ثابتی را طی دو دهه آینده طی خواهد کرد.
دیدگاههای اقتصادی و زیست محیطی برق هسته ای امروزه کشورهای بسیاری بویژه کشورهای اروپایی سهم قابل توجهی از برق مورد نیاز خود را از انرژی هسته ای تأمین می نمایند.
دیدگاه اقتصادی استفاده از برق هسته ای .
بطوریکه آمار نشان می دهد از مجموع نیروگاههای هسته ای نصب شده جهت تأمین برق در جهان به ترتیب 35 درصد به اروپای غربی، 33 درصد به آمریکای شمالی، 5/16 درصد به خاور دور، 13 درصد به اروپای شرقی و نهایتا فقط 74/0 درصد به آسیای میانه اختصاص دارد.
بدون شک در توجیه ضرورت ایجاد تنوع در سیستم عرضه انرژی کشورهای مذکور، انرژی هسته ای به عنوان یک گزینه مطمئن اقتصادی مطرح است.
بنابراین ابعاد اقتصادی جایگزینی نیروگاههای هسته ای با توجه به تحلیل هزینه تولید(قیمت تمام شده) برق در سیستمهای مختلف نیرو قابل تأمل و بررسی است.
از اینرو در اغلب کشورها، نیروگاههای هسته ای با عملکرد مناسب اقتصادی خود از هر لحاظ با نیروگاههای سوخت فسیلی قابل رقابت می باشند.
بهرحال طی چند دهه گذشته کاهش قیمت سوختهای فسیلی در بازارهای جهانی، سبب افزایش هزینه های ساخت نیروگاههای هسته ای به دلیل تشدید مقررات و ضوابط ایمنی، طولانی تر شدن مدت ساخت و بالاخره باعث ایجاد مشکلات تأمین مالی لازم و بالا رفتن قیمت تمام شده هر واحد الکتریسیته در این نیروگاهها شده است.
از یک طرف مشاهده میشود که طی این مدت حدود 40 درصد از هزینه های چرخه سوخت هسته ای کاهش یافته است و از سویی دیگر با توجه به پیشرفتهای فنی و تکنولوژی حاصل از طرحهای استاندارد و برنامه ریزیهای دقیق بمنظور تأمین سرمایه اولیه مورد نیاز مطمئن و به هنگام احداث چند واحد در یک سایت برای صرفه جوئیهای ناشی از مقیاس مربوط به تأسیسات و تسهیلات مشترک مورد نیاز در هر نیروگاه، همچنان مزیت نیروگاههای اتمی از دیدگاه اقتصادی نسبت به نیروگاههای با سوخت فسیلی در اغلب کشورها حفظ شده است.
سایر دیدگاههای اقتصادی در مورد آینده انرژی هسته ای حاکی از آن است که براساس تحلیل سطح تقاضا و منابع عرضه انرژی در جهان، توجه به توسعه تکنولوژیهای موجود و حقایقی نظیر روند تهی شدن منابع فسیلی در دهه های آینده، مزیتهای زیست محیطی انرژی اتمی و همچنین استناد به آمار و عملکرد اقتصادی و ضریب بالای ایمنی نیروگاههای هسته ای، مضرات کمتر چرخه سوخت هسته ای نسبت به سایر گزینه های سوخت و پیشرفتهای حاصله در زمینه نیروگاههای زاینده و مهار انرژی گداخت هسته ای در طول نیم قرن آینده، بدون تردید انرژی هسته ای یکی از حاملهای قابل دسترس و مطمئن انرژی جهان در هزاره سوم میلادی به شمار می رود.
در این راستا شورای جهانی انرژی تا سال 2020 میلادی میزان افزایش عرضه انرژی هسته ای را نسبت به سطح فعلی حدود 2 برابر پیش بینی می نماید.
با توجه به شرایط موجود چنانچه از لحاظ اقتصادی هزینه های فرصتی فروش نفت و گاز را با قیمتهای متعارف بین المللی در محاسبات هزینه تولید(قیمت تمام شده) برای هر کیلووات برق تولیدی منظور نمائیم و همچنین تورم و افزایش احتمالی قیمتهای این حاملها(بویژه طی مدت اخیر) را براساس روند تدریجی به اتمام رسیدن منابع ذخایر نفت و گاز جهانی مدنظر قرار دهیم، یقینا در بین گزینه های انرژی موجود در جمهوری اسلامی ایران، استفاده از حامل انرژی هسته ای نزدیکترین فاصله ممکن را با قیمت تمام شده برق در نیروگاههای فسیلی خواهد داشت.
دیدگاه زیست محیطی استفاده از برق هسته ای.
بدیهی است که این روند به دلیل اثرات مخرب و مرگبار آن در آینده تداوم چندانی نخواهد داشت.
از اینرو به جهت افزایش خطرات و نگرانیها تدریجی در مورد اثرات مخرب انتشار گازهای گلخانه ای ناشی از کاربرد فرایند انرژیهای فسیلی، واضح است که از کاربرد انرژی هسته ای بعنوان یکی از رهیافتهای زیست محیطی برای مقابله با افزایش دمای کره زمین و کاهش آلودگی محیط زیست یاد می شود.
همچنانکه آمار نشان می دهد، در حال حاضر نیروگاههای هسته ای جهان با ظرفیت نصب شده فعلی توانسته اند سالانه از انتشار 8 درصد از گازهای دی اکسید کربن در فضا جلوگیری کنند که در این راستا تقریبا مشابه نقش نیروگاههای آبی عمل کرده اند.
چنانچه ظرفیتهای در دست بهره برداری فعلی تولید برق نیروگاههای هسته ای، از طریق نیروگاههای با خوراک ذغال سنگ تأمین می شد، سالانه بالغ بر 1800 میلیون تن دی اکسید کربن، چندین میلیون تن گازهای خطرناک دی اکسید گوگرد و نیتروژن، حدود 70 میلیون تن خاکستر و معادل 90 هزار تن فلزات سنگین در فضا و محیط زیست انسان منتشر می شد که مضرات آن غیرقابل انکار است.
لذا در صورت رفع موانع و مسایل سیاسی مربوط به گسترش انرژی هسته ای در جهان بویژه در کشورهای در حال توسعه و جهان سوم، این انرژی در دهه های آینده نقش مهمی در کاهش آلودگی و انتشار گازهای گلخانه ای ایفا خواهد نمود.
درحالیکه آلودگیهای ناشی از نیروگاههای فسیلی سبب وقوع حوادث و مشکلات بسیار زیاد بر محیط زیست و انسانها می شود، سوخت هسته ای گازهای سمی و مضر تولید نمی کند و مشکل زباله های اتمی نیز تا حد قابل قبولی رفع شده است، چرا که در مورد مسایل پسمانداری با توجه به کم بودن حجم زباله های هسته ای و پیشرفتهای علوم هسته ای بدست آمده در این زمینه در دفن نهایی این زباله ها در صخره های عمیق زیرزمینی با توجه به حفاظت و استتار ایمنی کامل، مشکلات موجود تا حدود زیادی از نظر فنی حل شده است و طبیعتا در مورد کشور ما نیز تا زمان لازم برای دفع نهایی پسمانهای هسته ای، مسائل اجتماعی باقیمانده از نظر تکنولوژیکی کاملا مرتفع خواهد شد