دانلود مقاله سوخت هسته ای و فرایند آن

Word 76 KB 6471 55
مشخص نشده مشخص نشده محیط زیست - انرژی
قیمت قدیم:۲۴,۰۰۰ تومان
قیمت: ۱۹,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • پسماند های هسته‌ ای

     علی رغم سابقه به وضوح ایمن در طول نیم قرن گذشته، امروزه یکی از بحث برانگیزترین جنبه های چرخه سوخت هسته ای مسئله مدیریت و دفع پسماندهای پرتوز است[.

    P1 مشکل ترین مسئله، پسماندهای سطح بالا هستند، و دو سیاست مختلف برای مدیریت آنها وجود دارد:

    بازفرآوری سوخت مصرف شده برای جدا کردن آنها (که با شیشه ای کردن و دفع کردن آنها ادامه می یابد) یا

    دفع مستقیم سوخت مصرف شده دارای پرتوزایی سطح بالا به صورت پسماند.

    ]پسماندهای هسته ای اصلی در سوخت راکتور سفالی محفوظ باقی می مانند[.

    P2 همانطور که در فصل‌های 3و4 به طور خلاصه گفته شد، “سوزاندن” سوخت در قلب راکتور محصولات شکافتی تولید می کند به مانند ایزوتوپ های مختلف باریم، استرونسیم، نریم، ید، کریپتون و گرنون (Ba، Sr، Cs، I، Kr، Xe). بیشترین ایزوتوپ‌ های شکل گرفته به صورت محصولات شکافت در سوخت به شدت پرتوزا هستند و متعاقباً عمرشان کوتاه است.

    P3 علاوه بر این اتم های کوچکتر به وجود آمده از شکافت سوخت، ایزوتوپ‌های ترااورانومی مختلفی هم با جذب نوترون تشکیل می شوند. از جمله اینها پلوتونیوم- 239، پلوتونیوم- 240 و پلوتونیوم- 241[1]، به علاوه محصولات دیگری هستند که از جذب نوترون توسط u-2381 در قلب راکتور و سپس تلاشی بتا به عمل می آیند. همه اینها پرتوزا هستند و به غیر از پلوتونیوم شکافت پذیر که “می‌سوزد”، در سوخت مصرف شده ای که از راکتور برداشته می شود باقی می مانند. ایزوتوپ های ترا اورانیوم و دیگر اکتنیدها[2] بیشترین قسمت از پسماندهای سطح بالای با طول عمر زیاد را شکل می دهند.

    P4 در حالی که چرخه سوخت هسته ای صلح آمیز، پسماندهای مختلفی تولید می‌کند، این پسماندها “آلودگی” به شمار نمی آیند، زیرا در عمل همه آنها نگهداری و مدیریت می شوند، در غیر این صورت است که خطرناک خواهند بود. در حقیقت توان هسته ای تنها صنعت تولید انرژی است که مسئولیت کامل همه پسماندهایش را برعهده گرفته و هزینه آن را به طور کامل بر قیمت تولیداتش اضافه می کند. وانگهی هم اکنون مهارت های به دست آمده در مدیریت پسماندهای غیر نظامی در حال شروع به اعمال شدن به پسماندهای نظامی است که یک مشکل محیط زیستی جدی در چند نقطه جهان ایجاد کرده است.

    ]پسماندهای پرتوزا مواد گوناگونی را شامل می شوند که از جهت محافظت مردم و محیط زیست اقدامات متفاوتی را طلب می کنند. مدیریت و دفع آنها از نظر فن آوری سر راست است[.

    P5 این پسماندها براساس مقدار و نوع پرتوزایی موجود در آنها معمولاً به سه دسته تحت عنوان های پسماندهای سطح پایین سطح متوسط و سطح بالا دسته بندی می‌شوند.

    P6 عامل دیگر در مدیریت پسماندها مدت زمانی است که آنها ممکن است خطرناک باقی بمانند. این زمان به نوع ایزوتوپ های پرتوزای موجود در آنها و به خصوص مشخصه نیمه عمر هر یک از این ایزوتوپ ها بستگی دارد. نیمه عمر مدت زمانی است که طی می شود تا یک ایزوتوپ پرتوزا نیمی از پرتوزائیش را از دست بدهد. پس از چهار نیمه عمر سطح پرتوزایی به  مقدار اولیه آن و پس از هشت نیمه عمر به  آن می رسد.

    P7 ایزوتوپ های پرتوزای مختلف نیمه عمرهایی دارند که از کسری از ثانیه تا دقیقه‌ها، ساعات یا روزها، حتی تا میلیون ها سال گسترده شده اند. پرتوزایی با گذشت زمان، همانطور که این ایزوتوپ ها به ایزوتوپ های پایدار غیر پرتوزا تلاش می کنند کم می شود.

    P8 آهنگ تلاشی یک ایزوتوپ با عکس نیمه عمرش متناسب است. یک نیمه عمر کوتاه به معنای تلاشی سریع است. بنابراین، برای هر نوع پرتوزایی، شدت پرتوزایی بالاتر در یک مقدار ماده داده شده مستلزم کوتاه‌تر بودن نیمه عمر است.

    P9 سه اصل کلی برای مدیریت پسماندهای پرتوزا بکار گرفته می شود:

    تغلیظ و نگهداری concentrate-and-cantain

    تضعیف و پراکنش dilute- and disparoe

    تأخیر و تلاش delay-and-decay

    P10 دو تای اول در مورد مدیریت پسماندهای غیر پرتوزا هم به کار می روند. پسماندها یا تغلیظ شده و سپس متروی می شوند، یا (برای مقادیر خیلی کم) تا سطح قابل قبولی تضعیف شده و سپس به محیط زیست باز گردانده می شوند. با این وجود تأخیر و تلاشی منحصر به مدیریت پسماندهای پرتوزاست و به این معنی است که پسماند ذخیره و اجازه داده می شود که پرتوزایی آن از طریق تلاشی طبیعی ایزوتوپ‌های موجود در آن کم شود.

    ]در چرخه سوخت هسته ای غیرنظامی توجگه اصلی بر پسماندهای سطح بالاست که حاوی محصولات شکافت و عناصر ترا اورانیومی تشکیل شده در قلب راکتور هستند[.

     

    P11 پسماند سطح بالا: ممکن است خود سوخت مصرف شده یا پسماند اصلی حاصل از باز پردازش آن باشد. در هر دو حال این حجم متوسطی دارد- در حدود 30-25 تن سوخت مصرف شده یا سه مترمکعب پسماند شیشه ای شده در سال برای یک نمونه راکتور هسته ای بزرگ (1000 MWC، نوع آب سبک). این حجم می تواند به صورت موثر و اقتصادی ایزوله شود. سطح پرتوزایی آن به سرعت کم می شود. به عنوان نمونه، یک مجموعه سوخت راکتور آب سبک تازه تخلیه شده آن قدر پرتوزایی دارد که چند صد کیلو وات گرما می پراکند، اما پس از یک سال این مقدار به 5kw و پس از پنج سال به یک کیلووات می رسد. ظرف مدت 40 سال پرتوزایی آن به حدود یک هزارم مقدار آن هنگام تخلیه می رسد.

    P12 اگر سوخت مصرف شده بازفرآوری شود، %3 آن که به صورت پسماند سطح بالا ظاهر می شود، عمدتاً مایع است و حاوی “خاکستر” اورانیوم سوخته شده است. این پسماند که شامل محصولات شکافت به شدت پرتوزا و چند عنصر سنگین با پرتوزایی دراز مدت است، مقدار قابل توجهی گرما تولید می کند و باید خنک شود. این به صورت شیشه بورو سیلیکات[3] (شبیه به پیرکتن) و به منظور پوشینه‌داری، ذخیره سازی میان مدت، و دفع نهایی در اعماق زمین شیشه ای می شود. این سیاستی است که توسط بریتانیا، فرانسه، آلمان، ژاپن، چین و هند اتخاذ می شود. (بخش های 5-2 و 5-3 را ببینید)

    P13 از طرف دیگر، اگر سوخت مصرف شده راکتور باز پردازش نشود، همه ایزوتوپ های با پرتوزایی بالا و اکتنیدهای دراز عمر در آن باقی می‌مانند، و در این صورت همه مجموعه های سوخت به شکل پسماند سطح بالا رفتار می کنند. گزینه دفع مستقیم توسط امریکا، کانادا و سوئد دنبال می شود، بخش 5-4 را بینید.

    P14 تعدادی از کشورها انتخابی بین بازپردازی و دفع مستقیم را گردن نهاده اند.

    P15 پسماندهای سطح بالا تنها %3 حجم کل پسماندهای پرتوزای جهان را تشکیل می‌دهند، اما 95% کل پرتوزایی از آنهاست.

    P16 علاوه بر پسماندهای سطح بالای حاصل از تولید توان هسته‌ای، هرگونه استفاده از مواد پرتوزا در بیمارستان ها، آزمایشگاه ها و صنایع آنچه را که (پسماندهای سطح- پایین) نامیده می شود، تولید می کند. رسیدگی کردن اینها خطرناک نیست اما باید با دقتی بیش از زباله‌های معمولی دفع شوند. پسماندهای هسته ای از بیمارستان‌ها. دانشگاهها و صنایع به علاوه صنایع توان هسته ای می آیند، آنها می توانند خاکستر شوند و معمولاً دست آخر در محل های دفن زباله کم عمقی چال می شوند. نشان داده شده است که این روش موثری برای مدیریت پسماند این چنین مواد نسبتاً بی‌خطری است به شرطی که همه مواد بسیار سمی ابتدا جدا شده و جزء پسماندهای سطح بالا قرار گیرد.

    کشورهای زیادی دارای مخازن پایانی فعال برای پسماندهای سطح پایین هستند. پسماندهای سطح پایین تقریباً همان پرتوزایی را دارند که سنگ معدن لورانیوم مرتبه پایین دارد و هم آنها بالغ بر بیش از پنجاه برابر پسماندهای سطح بالای سالانه است. در کل جهان این پسماندها 90% کل حجم را تشکیل می دهند اما فقط 1% پرتوزایی کل همه پسماندهای پرتوزا را دارند.

    ]پسماندهای سطح متوسط[ بیشتر از صنایع هسته ای می آیند. آنها پرتوزاتر هستند و باید پیش از رسیدگی و دفع در برابر مردم حفاظ گذاری نشوند و شامل درین‌ها، رسوب‌های شیمیایی و اجزای راکتور به علاوه مواد آلوده مربوط به از رده خارج کردن راکتورها می شوند. این پسماندها برای دفع بیشتر در بتون قرار داده می شوند. معمولاً پسماند کوتاه عمر (بیشتر از راکتورها) دفن می شود، اما پسماند دراز عمر (از سوخت هسته ای بازفرآوری شده) در اعماق زیر زمین دفع می شوند. پسماندهای سطح میانی 7% حجم پسماندهای پرتوزای و 4% پرتوزایی جهان را تشکیل می دهند.

     

     بازفرآوری سوخت مصرف شده

    ]مهمترین دلیل برای بازفرآوری بیرون کشیدن اورانیوم و پلوتونیوم مصرف نشده از عناصر سوخت مصرف شده است. دلیل دوم کاهش حجم موادی است که به صورت پسماند سطح بالا دفع می شوند[.

    P1 بازفرآوری از هدر رفتن مقدار قابل توجهی از منابع جلوگیری می کند زیرا بیشتر سوخت مصرف شده (اورانیومی با کمتر از 1% u-235 و اندکی پلوتونیوم) می‌تواند به صورت عناصر سوخت جدید بازیابی شود، که 30% اورانیوم طبیعی را که در غیر این صورت لازم بود ذخیره می کند. این اورانیوم و پلوتونیوم به سوخت اکسید مختلط تبدیل می شوند و یک منبع مهم هستند. سپس پسماندهای سطح بالای باقی مانده برای دفع‌شدن به صورت مواد جامدفشرده، پایدار و غیرقابل حلی تبدیل می‌شوند که دفعشان از مجموعه های حجیم سوخت مصرف شده آسان تر است.

    P2 یک راکتور آب سبک 1000Mwe در حدود 25 تن سوخت مصرف شده در سال تولید می کند، تا به حال، پیش از 80000 تن از سوخت مصرف شده‌ی راکتورهای تولید برق تجاری بازفرآوری شده است و هم اکنون ظرفیت سالانه این کار حدود 5000 تن در سال است.

    P3 مجموعه های سوخت مصرف شده ای که از یک راکتور خارج می شوند به شدت پرتوزا هستند و گرما تولید می کنند. به همین خاطر آنها در تانک‌هایی بزرگ یا حوضچه‌هایی از آب قرار داده، خنک می کنند و سه متر از آب روی آنها پرتوها را مهار می کند. آنها در این جا، که در محل راکتور یا در ایستگاه بازفرآوری است، چند سالی باقی می مانند تا سطح تابش آنها به طور چشمگیری کاسته شود. برای بیشتر انواع سوخت ها بازفرآوری در حدود 50 سال پس از تخلیه راکتور انجام می شود.

    P4 سوخت مصرف شده ممکن است پس از خنک سازی اولیه، با استفاده از فلاسک‌های محافظ دار خاصی که تنها چند تن (مثلاً 6 تن) از سوخت مصرف شده را در خود جای داده اما حدود 100 تن وزن دارند، حمل و نقل شود. انتقال سوخت مصرف شده و دیگر پسماندهای سطح بالا به سختی مراقبت می شود.

    P5 بازفرآوری سوخت اکسید مصرف شده مستلزم حل عناصر سوخت در اسید نیتریک است. سپس جداسازی شیمیایی اورانیوم و پلوتونیوم انجام می شود. Pu و u می توانند به ورودی چرخه سوخت بازگردانده شوند. (اورانیوم به مرحله تبدیل، پیش از غنی سازی دوباره و پلوتونیوم مستقیماً به مرحله ساخت سوخت). (در حقیقت به منظور بازیابی سوخت آنها اغلب در یک محل واحد هستند). مایع باقی مانده پس از بیرون کشیدن pu و u، پسماند سطح بالاست که شامل حدود 3% از سوخت مصرف شده است. این پسماند به شدت پرتوزاست و به تولید گرمای شدید ادامه می دهد.

     

    [1] - pa-241 است که تلاشی کرده و امرسیم- 241 را که در آشکارسازهای دود خانگی به کار می رود، برای ما ایجاد می کند.

    [2] - اکتنید ها عناصری هستند با عدد اتمی 89 (اکتینیم) یا بالاتر و ترا اورانیوم ها بالاتر از 92 (اورانیوم)

    [3] - مترجم 1: نوعی شیشه که پنج درصد آن اسید بوریک است و در مقابل گرمای زیاد مقاوم می باشد.

  • فهرست:

    ندارد.


    منبع:

    ندارد.

مسأله چگونگی دفع پسماند های هسته ای، مسأله ای بوده که از ابتدا ذهن اکثر کارشناسان مسائل محیط زیست را به خود جلب کرده است. بسیاری از نیروگاه های تولید انرژی که با سوخت هسته ای کار می کنند در پایان زمان بهره برداری استاندارد خود قرار دارند. این مسأله در ایالات متحده آمریکا که عمده نیروگاه های آن درسال های پایانی فعالیت قرار دارند، نگرانی های بسیاری را به همراه داشته است. نیروگاه ...

تعریف راکتور هسته ای: راکتور هسته ای به عنوان چشمه تولید انرژی‎: ‎عناصر فوق اورانیوم‎ : ‎‎به دست آوردن مواد رادیواکتیو: مباحث مرتبط با عنوان‎: تعریف راکتور هسته ای: وسیله ای که در آن واکنش شکافت زنجیری کنترل شده انجام می شود راکتور هسته ای نام دارد. ‏‏اورانیوم یا پلتونیوم ( عنصر پرتوزای مصنوعی با عدد اتمی 94‏‎ ( Z=‎به عنوان ماده شکافت پذیر ‏‏«سوخت هسته ای ) به کار می رود. از ...

انرژي هسته اي ديد کلي وقتي که صحبت از مفهوم انرژي به ميان مي‌آيد، نمونه‌هاي آشناي انرژي مثل انرژي گرمايي ، نور و يا انرژي مکانيکي و الکتريکي در شهودمان مرور مي‌شود. اگر ما انرژي هسته‌اي و امکاناتي که اين انرژي در اختيارش قرار مي‌دهد، آشنا ‌شويم، ش

استفاده اصلی از انرژی هسته‌ای، تولید انرژی الکتریسته است. این راهی ساده و کارآمد برای جوشاندن آب و ایجاد بخار برای راه‌اندازی توربین‌های مولد است. بدون راکتورهای موجود در نیروگاه‌های هسته‌ای، این نیروگاه‌ها شبیه دیگر نیروگاه‌ها زغال‌سنگی و سوختی می‌شود. انرژی هسته‌ای بهترین کاربرد برای تولید مقیاس متوسط یا بزرگی از انرژی الکتریکی به‌طور مداوم است. سوخت اینگونه ایستگاه‌ها را ...

استفاده از انرژی هسته‌ای برای تولید برق روشی پیچیده اما کارامد برای تامین انرژی مورد نیاز بشر است. به طور کلی برای بهره‌برداری از انرژی هسته‌ای در نیروگاه‌های هسته‌ای، از عنصر اورانیوم غنی شده به عنوان سوخت در راکتورهای هسته‌ای استفاده می‌شود که ماحصل عملکرد نیروگاه، انرژی الکتریسته است. عنصر اورانیوم که از معادن استخراج می‌شود به صورت طبیعی در راکتورهای نیروگاه‌ها قابل استفاده ...

آشنایی با فعالیت های سازمان انرژی اتمی ایران بدون تردید جمهوری اسلامی ایران از کشورهای صاحب نام در عرصه فناوری هسته ای در جهان است، اما کسب این جایگاه در گرو تلاش های بی وقفه کارشناسان و متخصصان اهل این سرزمین است که در طول سال های گذشته از هیچ کوششی فرو گذار نبوده اند. روایت جهانی شدن دانش هسته ای ایرانیان روایتی شنیدنی است که بازگویی و تامل در آن نسل امروز ما را با مسیر پیموده ...

رآکتور هسته‌ای واکنش گاه هسته‌ای یا رآکتور اتمی دستگاهی برای انجام واکنش های هسته ای بصورت تنظیم شده و تحت کنترل است. این دستگاه در اندازه های آزمایشگاهی, برای تولید ایزوتوپهای ویژه مواد پرتوزا (رادیواکتیو) و همینطور پرتو-داروها برای مصارف پزشکی و آزمایشگاهی, و در اندازه های صنعتی برای تولید انرژی برق ساخته میشوند. واکنشهای هسته ای به دو صورت شکافت و همجوشی, بسته به نوع مواد ...

انرژی هسته ای از معدن تا نیروگاه استفاده از انرژی هسته‌ای برای تولید برق روشی پیچیده اما کارامد برای تامین انرژی مورد نیاز بشر است. به طور کلی برای بهره‌برداری از انرژی هسته‌ای در نیروگاه‌های هسته‌ای، از عنصر اورانیوم غنی شده به عنوان سوخت در راکتورهای هسته‌ای استفاده می‌شود که ماحصل عملکرد نیروگاه، انرژی الکتریسته است. عنصر اورانیوم که از معادن استخراج می‌شود به صورت طبیعی در ...

انرژی هسته ای چکیده وقتی که صحبت از مفهوم انرژی به میان می‌آید، نمونه‌های آشنای انرژی مثل انرژی گرمایی ، نور و یا انرژی مکانیکی و الکتریکی در شهودمان مرور می‌شود. اگر ما انرژی هسته‌ای و امکاناتی که این انرژی در اختیارش قرار می‌دهد، آشنا ‌شویم، شیفته آن خواهیم شد. آیا می‌دانید که انرژی گرمایی تولید شده از واکنشهای هسته‌ای در مقایسه با گرمای حاصل از سوختن زغال سنگ در چه مرتبه ...

!دید کلی وقتی که صحبت از مفهوم انرژی به میان می‌آید، نمونه‌های آشنای انرژی مثل انرژی گرمایی ، نور و یا انرژی مکانیکی و الکتریکی در شهودمان مرور می‌شود. اگر ما انرژی هسته‌ای و امکاناتی که این انرژی در اختیارش قرار می‌دهد، آشنا ‌شویم، شیفته آن خواهیم شد. آیا می‌دانید که انرژی گرمایی تولید شده از واکنشهای هسته‌ای در مقایسه با گرمای حاصل از سوختن زغال سنگ در چه مرتبه بزرگی قرار ...

ثبت سفارش
تعداد
عنوان محصول