چکیده
این مقاله درباره عملکرد رگولاتورهای خطی ولتاژ میباشد. متداولترین روشهای رگولاسیون مطرح خواهند شد. در قسمت رگولاتورهای خطی، انواع استاندارد، LDO و نیمه LDO به همراه مثالهای مداری ، تشریح خواهند شد. البته رگولاتورهای سویچینگ دارای انواع کاهشی، کاهشی – افزایشی ، افزایشی و بازگشتی نیز وجود دارند. همچنین مثالهایی از کاربردهای عملی با استفاده از این رگولاتورها ارائه میشود.
مقدمه
رگولاتور خطی بلوک ساختاری اساسی تقریبا هر منبع تغذیه الکترونیکی میباشد. استفاده از IC رگولاتور خطی آسان است و بطور کامل حفاظت شده (fool proof) میباشد و آنقدر ارزان است که معمولا یکی از ارزانترین اجزای یک سیستم الکترونیکی میباشد. این مقاله اطلاعاتی برای درک عمیقتر عملکرد رگولاتور خطی ارائه میدهد و کمک میکند تا کاربردها و مشخصههای رگولاتور به خوبی معلوم گردد. تعدادی مدار واقعی از رگولاتورهای تجاری که در حال حاضر موجودند، ارائه میشود.
محصولات جدید در حوزه تنظیم کنندههای LDO واقع شده اند که در بسیاری از کاربردها، مزایای بیشتری نسبت به رگولاتورهای استاندارد ارائه میدهند.
عملکرد رگولاتورهای خطی ولتاژ
مقدمه
هر مدار الکترونیکی نیاز به ولتاژ تغذیهای دارد که معمولا ثابت فرض میشود. یک رگولاتور ولتاژ، این ولتاژ خروجی dc ثابت را فراهم میکند و شامل مجموعه مداراتی است که بطور مداوم ولتاژ خروجی را بدون توجه به تغییرات جریان بار یا ولتاژ ورودی، در مقدار طراحی، ثابت نگه میدارد(فرض بر این است که جریان بار و ولتاژ ورودی در محدوده عملکرد تعیین شده برای قطعه میباشند).
رگولاتور ولتاژ خطی پایه
یک رگولاتور خطی به کمک یک منبع جریان کنترل شده با ولتاژ، ولتاژ معین و ثابتی را در پایانه خروجیاش ایجاد میکند.
(تصاویر در فایل اصلی موجود است)
دیاگرام عملکرد رگولاتور خطی
مجموعه مدارات کنترلی باید ولتاژ خروجی را حس کند و منبع جریان را( به میزانی که مورد نیاز بار است) برای نگه داشتن ولتاژ خروجی در میزان مطلوب تنظیم نماید. محدودیت طراحی منبع جریان، حداکثر جریان باری را که رگولاتور میدهد، در حالی که همچنان به صورت رگوله باشد، معین میکند. ولتاژ خروجی با یک حلقه فیدبک که به نوعی جبران سازی برای حصول اطمینان از پایداری حلقه نیاز دارد، کنترل میشود. بیشتر رگولاتورهای خطی دارای جبران سازی داخلی هستند و بدون نیاز به به اجزای خارجی، کاملا پایدار میباشند. برخی رگولاتورها( مانند انواع LDO ) ، به مقداری ظرفیت خازنی خارجی که از خروجی به زمین وصل شده است، برای حصول اطمینان از پایداری تنظیم کننده احتیاج دارند. مشخصه دیگر هر رگولاتور خطی این است که برای اصلاح ولتاژ خروجی بعد از تغییر در جریان بار، به مقدار محدودی زمان نیاز دارد. این تاخیر زمانی بیانگر مشخصه پاسخ زودگذر
دیاگرام یک رگولاتور خطی واقعی
قطعه عبوری Q1 در این رگولاتور از یک زوج دارلینگتون NPN که بوسیله یک ترانزیستور PNP راهاندازی میشود، تشکیل شده است (این topology یک رگولاتور استاندارد است) .جریان خارج شده از امیتر ترانزیستور عبوری (که همان جریان بار IL میباشد) بوسیله QQ2 و تقویت کننده خطای ولتاژ کنترل میشود. جریان عبوری از مقسم مقاومتی R2,R1 در مقایسه با جریان بار، ناچیز است. حلقه فیدبکی که ولتاژ خروجی را کنترل میکند با استفاده از R2,R1 برای حس کردن ولتاژ خروجی و اعمال این ولتاژ به ورودی معکوس کننده تقویت کننده خطای ولتاژ، ایجاد میگردد. ورودی غیر معکوس کننده به ولتاژ مرجع وصل است که به این معنی است که تقویت کننده خطا بطور دائم ولتاژ خروجیاش را (و همچنین جریان را از طریقQ1) طوری تنظیم میکند که ولتاژهای دو سر ورودیاش ، برابر گردد. عملکرد حلقه فیدبک بطور مداوم خروجی را در یک مقدار معین که ضریبی از ولتاژ مرجع است (که بوسیله R2,R1 تنظیم میشود)، بدون توجه به تغییرات جریان بار، ثابت نگه میدارد. باید توجه داشت که یک افزایش یا کاهش ناگهانی در جریان بار (یا یک تغییر پلهای در مقاومت بار) باعث میشود ولتاژ خروجی آنقدر تغییر کند تا حلقه بتواند آنرا تصیح کند و در یک سطح جدید تثبیت گردد(که به این، پاسخ زودگذر گفته میشود). تغییر ولتاژ خروجی بوسیله R2,R1 حس میشود و به صورت یک سیگنال خطا در ورودی تقویت کننده خطا ظاهر میگردد و باعث میشود تا جریان از طریق Q1 تصحیح گردد.
انواع رگولاتورهای خطی (LDO ، استاندارد و نیمه LDO)
سه نوع اساسی از رگولاتورهای خطی شرح داده میشود : رگولاتور استاندارد (شامل دارلینگتونNPN ) ، Low-Dropout یا رگولاتور LDO و رگولاتور نیمه LDO .
مهمترین تفاوت این سه نوع رگولاتور ، ولتاژ dropout میباشد که کمترین افت ولتاژی است که برای حفظ رگولاسیون ولتاژ خروجی مورد نیاز است. نکته مهمی که باید در نظر گرفت این است که رگولاتور خطی با کوچکترین ولتاژی کار کند که کمترین تلفات توان داخلی وبیشترین راندمان را داشته باشد. رگولاتور LDO به کمترین مقدار ولتاژ نیاز دارد، در حالی که رگولاتور استاندارد به بیشترین مقدار ولتاژ احتیاج دارد. تفاوت مهم دیگر رگولاتورها ، جریان پایه زمین است که رگولاتور در زمان تحریک یا به راه اندختن جریان بار مشخص شدهاش به آن نیاز دارد. رگولاتور استاندارد کمترین جریان پایه زمین را دارد ، در حالی که نوع LDO به طور کلی بالاترین جریان را دارد (این تفاوتها در بخشهای بعدی شرح داده خواهد شد). جریان افزایشیافته پایه زمین ، نامطلوب است زیرا یک جریان هدر رفته میباشد. به این دلیل که باید منبع آنرا تامین کند ولی به بار داده نمیشود.
رگولاتور (NPN) استاندارد
در اولین رگولاتورهای ولتاژ ساخته شده به صورت IC ، برای قطعه عبوری از پیکربندی دارلینگتون NPN استفاده شد و آنها به عنوان رگولاتورهای استاندارد معرفی شدند
نکته مهم در رگولاتورهای استاندارد این است که برای رگولاسیون خروجی ، ترانزیستور عبوری به یک ولتاژ کمینه که با رابطه زیر داده میشود، نیاز دارد:
VD(MIN)= 2VBE + VCE
این ولتاژ در گستره دمایی 55- درجه تا 150 درجه سانتیگراد، بوسیله کارخانه بین حدود 5/2 تا 3 ولت تنظیم میشود تا محدودیتهای عملکرد تعیین شده ، تضمین گردد. ولتاژی که خروجی به ازای آن واقعا از حالت رگولاسیون خارج میشود ( که ولتاژ dropout نام دارد)، برای رگولاتور استاندارد ، مقداری بین 5/1 تا 2/2 ولت دارد ( که هم به جریان بار وهم به دما وابسته است). ولتاژ dropoutرگولاتور استاندارد ، بالاترین (بدترین) مقدار را در بین این سه نوع رگولاتور دارد. جریان پایه زمین در این رگولاتور خیلی کم است (LM309 میتواند جریان بار یک آمپر را با جریان پایه زمین کمتر از 10 میلیآمپر تامین نماید) . علتش این است که جریان تحریک بیس ترانزیستور عبوری (که به پایه زمین میرسد) برابر است با جریان بار تقسیم بر بهره قطعه عبوری. در رگولاتور استاندارد، شبکه قطعه عبوری از یک ترانزیستور PNP و دو ترانزیستور NPN تشکیل یافته است که در نتیجه بهره جریان کل آن خیلی زیاد است(بیشتر از 300) . نتیجه استفاده از یک قطعه عبوری با چنین بهره جریان بالایی این است که به جریان خیلی کوچکی برای تحریک بیس ترانزیستور عبوری نیاز است که به جریان پایه زمین کمتری منجر میشود. جریان پایه زمین این رگولاتور کمترین (بهترین ) مقدار را در بین سه نوع رگولاتور دارد.
رگولاتور Low – Dropout (LDO)
رگولاتور LDO از این جهت با رگولاتور استاندارد تفاوت دارد که قطعه عبوری در LDO تنها از یک ترانزیستور PNP ساخته شده است
(تصاویر در فایل اصلی موجود است)